

Amplificaton	ctubeloogr	ctonng	microaraars	NUCLEIC ACI	PROTEIN FUNCTION	QUANTITATIVE PCR	Soffune solutions

Mx3005P ${ }^{\text {w" }}$ System

Most Flexible

Mx3000P² System

Most Affordable

Performance runs in the family.

Choose the personal QPCR system that's right for you.

Stratagene now offers two affordable, fully-featured quantitative PCR (QPCR) systems. The new five-color Mx3005P ${ }^{1 m}$ QPCR System includes expanded features to support a wider range of real-time QPCR applications, such as simultaneous five-target detection and alternative QPCR probe chemistries. The Mx3000P* QPCR System is still the most affordably priced four-color 96-well system available.

A four- or five-color instrument, with user-selected filters

- Advanced optical system design for true multiplexing capability, and wider application support
- QPCR Software with enhanced data analysis and export functionality

Need More Information? Give Us A Call:

Technical Services: 8 c 0 : $894-13 \mathrm{c} 4 \times 2$

Stratagenle Europe

Stratagene lapan K.K.

Technical Services: 03-5:55-2c70

Clonetics ${ }^{\circ}$ Primary Neuronal Cell Systems

Biologically Relevant...Convenient...Easy to Use

Normal Human Astrocytes

- Cryopreserved, graranteed for 10 population doublings stain $>80 \% \mathrm{GliAl}^{3}$.
- Optimized media kit available for growth.

Rat and Mouse Neural Cells

* Astrocytes and neutons from Cortex, Hippocampus, Striatum, and Dorsal Root Ganglia.
- Mouse C57 Striatum and

Cortex Neurons.

- Mouse CD1 Mixed Astrocytes.

Normal Human Neural Progenitors

- Neurosplleres diflerentiate into a mixed population of mature. functional neurons and astrocytes.
- Optimized media kits for growth and differentiation.

[^0]

500,000 SNPS • New GeneChip ${ }^{\text {² }}$ Mapping 500K Array Set Begin the whole-genome association studies you have been waiting years to do - right now. Use the proven approach to get a comprehensive understanding of the genetics of disease or drug response.

1,000,000 Exons • New GeneChip ${ }^{\circ}$ Human Exon 1.0 ST Array Add a new dimension to your research by monitoring genome-wide alternative splicing on a single array.
Dig deeper and discover novel mechanisms and biomarkers at the exon level.
$45,000,000$ Probes • New GeneChip ${ }^{\text {B }}$ Tiling Arrays Unparalleled genome coverage delivers a more accurate understanding of novel transcript discovery and protein/DNA interactions, including chromatin immunoprecipitation assays. Now you can explore promoter regions or entire genomes and answer your most complex questions.

1 Platform - Only Affymetrix brings you the most powerful views of the genome, with arrays that enable whole-genome discovery at multiple levels and provide better answers to your complex biological questions. Whether you're in academia or industry, Be the 1 to conduct the science that leads to better insights and better understanding.

HisTrap FF crude

Take an xpress run with HisTrap FF crude

The new ÄKTAxpress ${ }^{\text {Th }}$ TWIN has chromatography knowledge built in. It automatically purifies eight samples delivering $>95 \%$ pure tagged protein. ÄKTAxpress can extend from two to twelve modules, and has been designed to adapt to your future purification needs. By combining ÄKTAxpress with HisTrap ${ }^{\text {Th }}$ FF Crude prepacked columns, you can now apply sonicated unclarified samples without the centrifugation/filtration steps. Getting more histidine-tagged protein with less effort just takes a little pure imagination.

Visit www.amershambiosciences.com/aktaxpress

ÄKTAxpress TWIN

6C14 65

COVER Fossil leaf from the earliest Eocene (~ 55.5 million years ago) of the Bighorn Basin, Wyoming. The beginning of the Eocene was characterized by rapid global warming after a huge release of carbon into the atmosphere and ocean. Plant fossils described on page 993 document rapid, continental-scale changes in the geographic ranges of plants coincident with the warming. [Photo: S. Wing]

Departments

937 Science Online
939 This Week in Science
943 Editorial by Rodolfo Dirzo and Michel Loreau Biodiversity Science Evolves
945 Editors' Choice
948 Contact Science
949 NetWatch
1035 New Products
1036 Science Careers

News of the Week

Public Health
Pandemic or Not, Experts Welcome Bush Flu Plan
953 Hurricane Katrina
Levees Came Up Short,
Researchers Tell Congress
955 ITER
Fusion Leaders Make a
Diplomatic Choice
955 SCIENCESCOPE
956 Astrophysics
Surprise Neutron Star Suggests Black Holes Are Hard to Make

956 National Science Foundation Board Suggests How to Thrive Under Stress
957 U.S. Higher Education Schools Cheer Rise in Foreign Students
Epidemiology
Russian Cancer Study Adds to the Indictment of Low-Dose Radiation

News Focus

Biogeography
Is Everything Everywhere?
962 Profile: Susan Greenfield
The Baroness and the Brain
964 Evolution
Ancient DNA Yields Clues to the Puzzle of European Origins related Report page 1016

965 Drug Research
Trying to Catch Troublemakers With a Metabolic Profile
Paleontology Tyrannosaurus rex Gets Sensitive

976

Letters

971
I. Reviewers Affects Outcome? D. F. Ackerley; K. B. Wray. Correcting Temperature Data Sets J. R. Christy and R. W. Spencer. Response C. A. Mears and F. J. Wentz; S. C. Sherwood and J. R. Lanzante. Causation, Vioxx, and Legal Issues M. D. Green. Illusory Statistics R. M. Ewers
974 Corrections and Clarifications

Books et al.

975 Public Health
The Cutter Incident How America's First Polio Vaccine Led to the Growing Vaccine Crisis
P. A. Offit, reviewed by O. Kew

Physics
The Physics of Superheroes
J. Kakalios, reviewed by S. Kean

Policy Forum

978 Science and Law WMD Sensors-Search and Seizure D. Prosnitz

Perspectives

979 Evolution
The Tree-Thinking Challenge D. A. Baum, S. DeWitt Smith, S. S. S. Donovan

980 Chemistry
Following the Flow of Energy in Biomolecules P. M. Champion
related Report page 1006
982 BIOCHEMISTRY
The Photosynthesis "Oxygen Clock" Gets a New Number
J. E. Penner-Hahn and C. F. Vocum
related Report page 1019
983 Planetary Science
What Do We Need to Know to Land on the Moon Again?
M. T. Zuber and I. Garrick-Bethell

985 Biomedicine
Separation of Conjoined Hormones Yields
Appetite Rivals
R. Nogueiras and M. Tschöp
related Research Article page 996

Review

987 Complex Systems
Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology V. Grimm, E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H.-H. Thulke, J. Weiner, T. Wiegand, D. L. DeAngelis

Volume 310
11 November 2005
Number 5750

Systems Biology — DNA Amplification

Hit your hot-start PCR target first time the best just got faster!

Gel-lracking dyes in HotStarTaq Plus PCR buffer enable immediate gel loading

Higher PCR specificily with QIAGEN $\left|Q_{k} Q_{i}\right|$ than with enzymes from Supplier I, A_{1}, or R

New hot-start enzymes for high PCR specificity and sensitivity with minimal optimization!
Specificity, sensitivity, and easy handling, combined with minimal optimization are the key reasons why researchers trust Q|AGEN: enzymes. Now, with our 2 new hot-start PCR enzymes, you get successful results faster and more conveniently than ever before!

HotStarTaq ${ }^{\text {T }}$ Plus DNA Polymerase

- Fast 5-minute enzyme activation time combined with unrivaled performance
- Choice of original or ready-to-load PCR buffer for added convenience

HotStor Hifidelity Polymerase Kit

- Increased sensitivity and reliability
- New high-fidelity enzyme with 10 -fold higher fidelity than Taq DNA Polymerase

For fast and successful PCR results - visit www.qiagen.com/goto/PCR.

WWW.QIAGEN.COM

It is.

Not only does SciFinder provide access to more proteins and nucleic acids than any publicly available source, but they're a single click away from their referencing patents and original research.

Coverage includes everything from the U.S. National Library of Medicine's (NLM) MEDLLNE and much more. In fact, SciFinder is the only single source of patents and journals worldwide.
Once you've found relevant literature, you can use SciFinder's powerfiul refinement tools to focus on a specific rescarch area, for example: biological studies such as target organisms or discases; expression microartays; or analytical studies such as immunoassays, fluorescence, or PCR analysis. From each reference, you can link to the electronic full text of the original paper or patent, plus use citation tools to track how the research has evolved and been applied.
Visualization tools help you understand results at a glance. You can categorize topies and substances, identify relationships between areas of study, and see areas that haven't been cxplored at all.
Comprehensive, intuitive, seamless-SciFinder directs you. It's part of the process. 'Lo find out more, call us at 1-800-753-4227 (North America) or 1-614-447-3700 (worldwide) or visit www.cas.org/SCIFINDER.

Reports continued

Climate Change: Recent Ice-Sheet Growth in the Interior of Greenland O. M. Johannessen, K. Khvorostovsky, M. W. Miles, L. P. Bobylev Satellite data show that the interior of the Greenland Ice Sheet thickened from 1992 to 2003 because more snow accumulated there.

1016 Evolution: Ancient DNA from the First European Farmers in 7500-Year-Old Neolithic Sites
W. Haak, P. Forster, B. Bramanti, S. Matsumura, G. Brandt, M. Tänzer, R. Villems,
C. Renfrew, D. Gronenborn, K. Werner Alt, J. Burger

Modern Europeans are mainly descended from Paleolithic hunter-gatherers rather than Neolithic farmers, and probably acquired agriculture through cultural transmission. related News story page 964
1019 Biochemistry: Photosynthetic O_{2} Formation Tracked by Time-Resolved X-ray Experiments

1022 Medicine: Small-Molecule Inhibition of TNF- α
M. M. He, A. Stroustrup Smith, J. D. Osiob, W. M. Flanagan, A. C. Braisted, A. Whitty,
M. T. Cancilla, J. Wang, A. A. Lugovskoy, J. C. Yoburn, A. D. Fung, G. Farrington, J. K. Eldredge,
E. S. Day, L. A. Cruz, T. G. Cachero, S. K. Miller, J. E. Friedman, I. C. Choong, B. C. Cunningham A potentially useful small-molecule inhibitor interferes with the action of a trimeric inflammatory hormone by displacing a subunit and binding to the resulting dimer.

1025 Structural Biology: Structure of a V3-Containing HIV-1 gp120 Core
C. Huang, M. Tang, M.-Y. Zhang, S. Majeed, E. Montabana, R. L. Stanfield, D. S. Dimitrov, B. Korber, J. Sodroski, I. A. Wilson, R. Wyatt, P. D. Kwong

An exposed $\sim 50 \AA$ "hook" on HIV-1 helps it bind to host cells and provides a specific target for most natural antibodies to HIV.
1029 Ecologr: Species Loss and Aboveground Carbon Storage in a Tropical Forest
D. E. Bunker, F. DeClerck, J. C. Bradford, R. K. Colwell, I. Perfecto, O. L. Phillips, M. Sankaran, S. Naeem A simulation of forest decline shows that carbon sequestration in a tropical forest in Panama varies by up to a factor of six, depending on which among the 227 tree species are lost.
1031 Botany: The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley
. Haumann, P. Liebisch, C. Mäller, M. Barra, M. Grabolle, H. Dau
X-ray spectroscopy with a resolution of 10 microseconds reveals an elusive oxygen intermediate in the final step of photosynthesis. related Perspective page 982
A. Turner, J. Beales, S. Faure, R. P. Dunford, D. A. Laurie

The delayed flowering of spring-sown bardey, which allows larger grain yields, is caused by a gene mutation that reduces the sensitivity of the flowering pathway to longer days.

Opt for innovation

When Affymetrix needed unparalleled sensitivity and specificity for their next generation GeneChip ${ }^{\ominus}$ Exon Array, they opted for RiboMinus ${ }^{T M}$ transcriptome enrichment from Invitrogen.

At Invitrogen, we know that discovery thrives on innovation. That's why our broad portfolio of innovative nucleic acid purification products offers the solutions you need:
-TRIzol ${ }^{\text {TM }}$ Reagent-the most popular and effective total RNA purification product on the market

- ChargeSwitch ${ }^{\ominus}$ technology—high-throughput DNA and RNA purification without a centrifuge, vacuum, chaotropic salts, or solvents
- PureLink ${ }^{\text {mM }}$ nucleic acid purification kits—familiar spin column, 96 - and 384-well plate, and gravity flow column formats from mini- to gigaprep scale
- RiboMinus ${ }^{T M}$ transcriptome enrichment-novel, negative selection system

Affymetrix is thinking differently about nucleic acid purification-isn't it time you did too? Opt for innovation. Opt for Invitrogen.

Learn more at www.invitrogen.com/NAPrep.

© invitrogen ${ }^{-1}$

2005 Invitrogen Corporation. All rights reserved.

sciencenow www.sciencenow.org Dally News Coverage

Y Did the Chromosome Cross the Road?
Women find humor more rewarding, neurologically speaking, than men do.
Evolution on Ice
Icebergs may have accelerated changes in penguin DNA.
New Alzheimer's Target Identified
Findings may allow for development of safer, more specific therapies for disease.

Doing everyone's work?

science's next wave www.nextwave.org Career Resources for Young Scientists

Career Development Center: Lab Dynamics-Doing Everyone Else's Job C. Cohen and S. Cohen If you carry the weight of the whole lab on your shoulders, you need to reexamine your management style.

Career Development Center: How to Get a Grant GrantDoctor

The GrantDoctor reviews some of the basic principles of good grantsmanship.
EUROPE: The European Young Investigator Awards-Meet the $\mathbf{2 0 0 5}$ Laureates E. Pain and A. Forde Next Wave talks with some of the 2005 winners about their career paths and what made them successful.
GrantsNet: International Grants and Fellowships Index Next Wave Staff Get the latest listing of funding opportunities from Europe, Asia, and the Americas.
Web Log: European Science Careers News Clips E. Pain and A. Forde
Read about a survey on the handling of postdoctoral fellowships across Europe and more...
Web Loc: USA Careers in Science Web Log J. Austin
A scientist recently profiled in Next Wave gives credit where credit is due.
science's sage ke www.sageke.org Science of Aging Knowledge Environment
Review: Mitochondrial Genetics of Aging-Intergenomic Conflict Resolution D. M. Rand Understanding biochemical and genetic conflicts between mitochondria and nucleus sheds light on aging.
News Focus: Cancer Connection M. Leslie
Tumor-fighter throttles life-extending protein SIRT1.

Brushing up on history.

Classic Papers

Download PDFs of pre-1990 articles on aging.

Signaling in rice.
science's stke www.stke.org Signal Transduction Knowledge Environment
Connections Map: G Protein Signaling in the Regulation of Rice Seed Germination S. M. Assmann G proteins are implicated in the regulation of rice seed germination by the plant hormones gibberellic acid and abscisic acid.
Connections Map: G Protein Regulation of Disease Resistance During Infection of Rice with Rice Blast Fungus S. M. Assmann

Just as in animals, plant responses to pathogenic agents involve G protein signaling.

Separate individual orinstitutional subscriptions to these products may be required for full-text access.

GrantsNet www.grantsnet.org Research funding Datasase	AIDScience www.aidscience.com hiv Preventon \& Vacane research	Members Only! www.AAASMember.ors AAAS Online community	Functional Genomics www.sciencegenomics.org News, Research, Resources

PNAS Legacy

90 years of scientific research
mor haner 390,000 pages anro over 80,000 articles

The Proceedings of the National Academy of Sciences (PNAS) is pleased to announce that its legacy content dating back to the 1915 inaugural issue is now digitally archived, searchable, and freely available on the PNAS web site at WWW.pnas.org

This Week in Science

Oxo Above, Sulfur Below

Sulfur coordination from cysteine to iron likely affects the selectivity of hydrocarbon oxidation by cytochrome P450 enzymes. However, small model compounds that could offer more details on the reaction mechanism have been hard to construct, because without the protein scaffold, sulfur ligands are unstable in an oxidizing environment. Bukowski et al. (p. 1000, published online 27 October) have prepared an iron complex with a modified cyclotetradecane ligand, which like heme has four coordinating nitrogen atoms, but also bears a pendant thiolate group rigidly positioned near the metal. Mössbauer and x -ray absorption spectroscopy confirmed that this molecule can form an $\mathrm{Fe}=\mathrm{O}$ bond at low temperature, while retaining the coordinated sulfur opposite the oxo group. The sul-fur-bound iron oxo favored one-electron over two-electron oxidation chemistry relative to an analogous compound in which the sulfur ligand was absent.

Looking Through HOOPs

The molecular trigger for visual response is a light-induced cis-to-trans isomerization in the retinal chromophore of rhodopsin that occurs in less than 1 picosecond. Kukura et al. (p. 1006; see the Perspective by Champion) have used femtosecond-stimulated Raman spectroscopy to discern which atoms move when in this process. Their technique offers sufficient simultaneous time and frequency resolution to monitor the coherent spectral features due to hydrogen out-of-plane (HOOP) bending motions around the isomerizing alkene group. By modeling the data, they find evidence for a pathway of rapid (<200 femtoseconds) electronic relaxation, followed by twisting of a distorted retinal backbone to the relaxed trans structure over the ensuing 800 femtoseconds.

Transitional Forcing

During the mid-Pleistocene, the characteris-

Bigger in the Middle

Rapid thinning is now occurring along the perimeter of the Greenland lce Sheet, but the response of the interior has been more difficult to determine precisely. Johannessen et at. (p. 1013, published online 20 October) have compiled a vast set of ice sheet elevations (45 million points) from satellite observations from 1992 to 2003. The expansive interior of the ice sheet is increasing in thickness by an average of around 5 centimeters per year, driven mostly by increasing rates of snow accumulation. The authors suggest that this growth is the result of the North Atlantic Oscillation on winter precipitation. This effect must be considered carefully when predicting ice sheet mass balance changes, because the behavior of the North Atlantic Oscillation is also thought to depend on global warming.

Climate Change and Ancient Plant Ranges

Using a plant fossil assemblage from Wyoming, Wing et al. (p. 993; see the cover) show that global warming at the PaleoceneEocene boundary (55.8 million years ago) caused rapid change in the geographic ranges of plant species. These range shifts were similar in rate and magnitude to climate-induced change in more recent, postglacial floras. Such short-term ecological change ($<10,000$ years) has seldom been shown in deep-time records because it is difficult to resolve transient events. The assemblage shows "individualistic" response of species to climate change (similar to conclusions from studies of quaternary pollen reconds), and that the "stasis" in species composition seen in deep-time records can mask dramatic, geologically short-lived events.

Piece by Piece

The electrochemically driven assembly of oligomers from different thiophene monomers on an iodinecovered gold surface has been visualized by Sakaguchi et al. (p. 1002) with the scanning tunneling microscope (STM). The polymers are grown on the surface from the monomers in solution by applying voltage pulses to the substrate. The homopolymers formed from 3-octyloxo-4-methylthiophene have a lower energy gap and show broader features in the STM images than do those from 3-octyl-4methylthiophene. In this way, the different types of copolymer strands formed at the surface can be distinguished.

Dueling Hunger Hormones?

Chrelin, a circulating peptide hormone produced in the stomach, has attracted much attention because of its stimulatory effect on food intake, but the effect of ghrelin may represent only half of the story. Using a bioinformatics approach, Zhang et al. (p. 996; see the Perspective by Nogueiras and Tschöp) show that ghrelin encodes a second peptide hormone that is processed from the same protein precursor as ghrelin. In rodents, a synthetic version of this hormone, obestatin, has the opposite physiological effect as ghrelin-it suppresses food intake. Obestatin mediates its actions through an orphan G protein-coupled receptor, GPR39, which shares sequences with, but is distinct from, the receptor targeted by ghrelin.

CONTINUED ON PAGE 941

Roche Applied Science
LightCycler ${ }^{\text {s }} 480$ Real-Time PCR System
Rapid by nature,

accurate by design

4 Lighteycter 480 Thermoblock for 96 or 384 wells. easily exchanged by users within minutes.

For general laboratory use.

Not for use in diagnostic procedures.

 Auth nizes: Resgents, nmmides a linited lices 'se for ise if the Pran nmress in life

 Tre :erhnclngy L.ser fir tre
$\approx \%$ ola Rnche Diagrestirs Cimbth. Aill riçltà reservec.

For years, Roche has provided real-time automated PCR solutions you can count on. Now, you can obtain the proven performance and benefits of the original LightCycler ${ }^{*}$ System in a 96- or 384-well instrument platform for highthroughput applications - the new LightCycler ${ }^{\circ} 480$ Real-Time PCR System.

Speed - Save time without sacrificing the quality of your results - precise, high-speed temperature changes maximize specificity and yield.

Accuracy - Benefit from our novel thermal block and data-capture technologies to minimize edge-effects for outstanding accuracy and precision.

Versatility - Combine 5 excitation and 6 detection channels, multiple probe formats, proven analysis soltware, and true master mix reagents to meel your specific application needs.

Compatibility - 'lake advantage of the instrument's automation and LIMS capabilitics to inkrface with your currenl syskems and future workllows.
Visil www.roche-app/fed-science.com/lightcycler480 for more information.

Roche
 Diagnostics

Roche Diagnostics GmbH Roche Applied Science 68298 Mannheim Germany

cammononsms THIS WEEK IN Science

Modeling Complexity

Simple models are often insufficient for predicting or explaining complex systems such as ecosystems or financial markets, but complex, mechanistic models can be difficult to test and cannot be fully analyzed mathematically. Grimm et al. (p. 987) review several recent advances in simulation modeling in an approach they call pattern-oriented modeling, a general strategy for designing and developing explanatory models of complex systems. Pattern-oriented modeling can predict multiple observed ecological patterns at different levels of organization. This approach can be used to distinguish among alternative model structures, to focus on the most important parameters, and to simplify models when possible.

Mainly a Cultural Legacy

Neither archaeological nor modern DNA sequence data have resolved whether modern Europeans are descended from paleolithic communities inhabiting the continent for 40,000 years, or from Neolithic farmers who arrived in Europe after the end of the most recent glaciation 10,000 years ago. Haak et al. (p. 1016; see the news story by Balter) present mitochondrial DNA sequence data derived from 7500-year-old Neolithic human remains excavated from sites in Central Europe to explore the extent to which early farmers generated the present-day genetic profile of Europe. The presence of sequences now rare in modern Europeans suggests that early Neolithic farmers have left little genetic legacy, and that their impact was largely cultural.

Targeting TNF- α Interactions

The proinflammatory cytokine, tumor necrosis factor- α (TNF- α), plays a role in diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis. TNF- α forms a homotrimer that binds to the TNF receptor to activate inflammatory responses. Although antibodies against TNF- α or soluble versions of the receptor are therapeutically effective, rationally designed small-molecule drugs that target protein-protein interactions would be useful. He et al. (p. 1022) report on a small-molecule inhibitor that functions by dissociating the TNF- α trimer. The inhibitor binds to the intact biologically active trimer, accelerates subunit dissociation, and forms a complex with a dimer of TNF- α subunits.

Detailed View of the HIV Spike

The human immunodeficiency virus (HIV) envelope spike contains three gp120 glycoproteins that promote viral entry into cells. Structures of gp 120 unliganded and bound to CD4 receptor have provided important insights but have lacked the immunodominant third variable region (V3) critical for coreceptor binding. Huang et al. (p. 1025) determined the structure of V 3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. The structure provides a rationale for how V3 can serve its dual roles in neutralization and HIV entry.

A Time to Grow, A Time to Crop

Barley is a very adaptable grain crop that can be grown from the Arctic Circle to subequatorial near desert regions. Part of barley's success derives from its diverse strains that have various responses to changes in photoperiod. Turner et al. (p. 1031) have now identified the Ppd-H1 gene of barley and find that it participates in the coordinate regulation of flowering by circadian clocks and seasonal photoperiod. A spring variety of barley shows reduced photoperiod response caused by a mutation in this gene that delays its flowering. Instead, the plant accumulates the vegetative mass required to produce more grain.

\square1,000,000 Exons • New GeneChip ${ }^{\text {® }}$ Human Exon 1.0 ST Array The first system for genome-wide, exon-level expression analysis on a single microarray. Add this new tool to capture alternative splicing data and robust gene-level expression results to complement your DNA sequence and protein expression data. View the complete picture to accelerate your discovery. Use the proven GeneChip platform to get better answers today and keep you in the lead tomorrow.

www.affymetrix.com - 1-888-DNA-CHIP (362-2447)

Europe: +44 (0) $1628552550 \bullet$ Japan: +81 -(0) $3-5730-8200$

AFFYMETRIX

Biodiversity Science Evolves

The planet's biodiversity is increasingly threatened by human activities. We have heard this before, and the global mantra to stop the damage has forged numerous international pancls and agreements over the past 15 years. Yet despite these efforts to ensure biodiversity conservation, we have witnessed extensive population extinctions and massive deforestation and fragmentation of natural habitats, and we may even see the geographic contraction of major ecosystems, such as the tropical rainforest in its northernmost distribution in the Americas. Our quantification of species extinction is poor, yet we do know that the number of threatened species, including the most charismatic animals, is considerable. For example, 25% of all the mammals on the planet are endangered. Obviously, there continue to be problems with enforcing conservation in the face of social and economic growth in industrialized and developing countries.

This week, DIVERSITAS, the international program on biodiversity science, is holding its first open science conference in Oaxaca, Mexico, to discuss why the challenge of biodiversity conservationarguably one of the biggest challenges facing modern society-remains so formidable, and how the international scientific community can be moved into action to address this problem. The timing of this conference is appropriate: It follows the Millennium Ecosystem Assessment, released in May 2005, which provides a comprehensive analysis of past and future trends in the state of ecosystems and discusses what information is necessary to inform policy decisions on conservation.

Increasingly robust databases on species distribution and analytical tools such as remote-sensing and climate change models have allowed us to make substantial progress toward understanding biodiversity distribution and rates of change. Likewise, we have begun to explore synergies between the drivers of biodiversity change, and there is a greater understanding of the relationships between biodiversity and ecosystem functioning. However, although compelling, these findings and knowledge are still being interpreted in isolation from one another, and this has perhaps been one of the major problems in achieving the goals of protecting biodiversity. The biodiversity scientific community is fragmented among types of ecosystems (terrestrial, freshwater, and marine); types of organisms (such as vertebrates, invertebrates, plants, and microbes); and, perhaps most critically, among disciplines (taxonomy, molecular biology, ecology, and socioeconomic sciences). Consequently, biodiversity science has been undervalued by the policy sectors.

As an important move toward integration, the DIVERSITAS conference, "Integrating Biodiversity Science for Human Well-Being," is providing a venue for researchers and students from different disciplines, as well as policy-makers, to assess the current strengths and weaknesses of biodiversity science and its main future challenges. The scientific challenges are enormous. We need many new technologies: molecular and bioinformatic tools to examine Earth's biodiversity; a coordinated observation system and standardized methods to monitor biodiversity; integrated analyses and models of social, ecological, and evolutionary processes to predict future biodiversity changes; and large-scale experimental facilities and new models to understand and predict the multiple effects of biodiversity changes on ecosystem services and human societies. At the same time, new approaches are needed to optimize the multiple uses of biodiversity in ways that consider tradeoffs and conflicts between conservation and development options and that incorporate the ethical dimensions of biodiversity conservation. Conservation in human-dominated landscapes as well as protected areas (only 10 to 11% of the land surface) will require that it become a socially and economically attractive activity that takes into consideration local inhabitants and landowners. This will require new economic approaches to ensure that rural inhabitants are compensated when they opt to conserve their land. The Costa Rican
 expenence of sustained programs of payment to farmers as compensation for setting aside forest for biodiversity conservation and ecosystem services is a promising example.

For biodiversity science to progress so that it produces socially relevant knowledge - in the sense that it can help society to better understand and capitalize on the value of biodiversity-it must evolve. There is an urgent need to integrate biological and social disciplines in order to generate reliable recommendations for society and to incorporate biodiversity conservation and use into mainstream policy worldwide. We need unity in diversity.

Rodolfo Dirzo and Michel Loreau
Rodolfo Dirzo is in the Department of Biological Sciences, Stanford University, Stanford, California, and is vice-chair of DIVERSITAS Michel Loreau is in the Department of Biology, McEill University, Canada, and is chair of DIVERSITAS.
10.1126/science. 1119958

$$
\begin{aligned}
& \text { A big day for Science } \\
& \text { is coming soon }
\end{aligned}
$$

Science

IMMUNOLOGY

An Inflammatory Lineage

Helper CD4 ${ }^{+}$T $\left(T_{H}\right)$ cells are traditionally divided into two principal lineages: interleukin-4 (IL-4)/IL-5-producing $\mathrm{T}_{\mathrm{H}} 2$ cells, which are associated with allergic and antiparasitic responses, and $T_{H} 1$ cells that produce inflammatory cytokines, principally interferon- γ (INF- γ). However, the expression of the cytokine IL-17 by a relatively small subset of CD4 ${ }^{+} T$ cells and its association with inflammation has suggested that this may define a $T_{H} 1$ sublineage.
Now. Harrington et al. and Park etal. provide evidence that IL-17-producing $\mathrm{CD} 4^{+}{ }^{\top}$ cells may represent a distinct T-helper population altogether, the development of which is coordinately regulated with those of $T_{H} 1$ and $T_{H} 2$ cells. Both studies confirmed the dependence of IL-17 expression on signaling through the receptor for the cytokine IL-23 and demonstrated that this was independent of the signals and transcriptional pathways responsible for IFN- γ and IL-4 production. Furthermore, both of these T-helper cytokines were found to inhibit IL-17 expression in naïve T cells-as opposed to differentiated $\mathrm{IL}-17^{+} \mathrm{T}$ cells-suggesting a dominant role in cross-regulation during early T cell priming. Given the clear association of IL-17 with tissue inflammatory responses, the strict management of $\mathrm{T}_{H} 17$ cell differentiation may represent a central checkpoint in preventing immune pathologies such as those seen in autoimmune diseases. - S.JS

Nat. Immunol. 6, 1123; 1133 (2005).

Climate science

Warmer and Drier
One effect that is expected to accompany global warming is the occurrence of more intense and more frequent droughts. Although it is known that protracted drought increases tree mortality, the response of forests on regional or continental scales to the kind of warmer drought that may occur in the future is poorly understood.

Breshears et al.examined the impact of recent drought on piñon pine trees in western North America, focusing on the relationships between tree die-off, temperature, and rainfall. They found that the 2000-2003 drought was not as dry as the previous one of 1953-1956, but that it occurred during a warmer period and hence might illustrate drought effects in the future. Their analysis shows that the recent drought caused a rapid
regional-scale loss of overstory trees mainly due to infestation by bark beetles, outbreaks of which are commonly caused by water stress; whereas the 1950 s drought affected mainly older trees, the 2000 s drought killed trees of all ages. Similar widespread drought in this century could cause large changes in carbon storage and dynamics, in fluxes of near-ground solar radiation, and in pat-

Changes in the normalized difference vegetation index (green, no change; red, largest decrease) in the southwestern US.
erosion, as well as alter microclimate feedbacks between the land and atmosphere and reduce the production of piñon nuts, an important food source for a number of species of birds, small mammals, and local people. - HJS

Proc. Natl. Acad. Sci.U.S.A. 102, 15144 (2005).

BIOCHEMISTRY

New Activity, Old Enzyme

Ever since we realized that chemicals introduced into the environment for the control of agricultural pests can persist for uncomfortably long periods, there has been an interest in microbes that are able to adapt to living off of (metabolizing) these synthetic carbon sources. In the case of the nematocide 1,3-dichloropropene, its degradation product, trans-3-chloroacrylic acid, undergoes hydrolytic decomposition with a half-life of 24,000 years at $19^{\circ} \mathrm{C}$, roughly
equal to the half-life for ${ }^{239} \mathrm{Pu}$ decay. Fortunately, the soil bacterium Pseudomonas pavonaceae expresses the enzyme CaaD, which Horvat and Wolfenden show accelerates hydrolysis, yielding malonate semialdehyde through addition of water and loss of HCl , by a factor of 10^{12}. They argue that this impressive rate enhancement is due largely to chemical transformations taking place in the active site (as opposed to substrate binding or product release) and that (aaD appears to be a considerably more proficient enzyme than its structural cousin 4oxalocrotonate tautomerase, all of which provides support for the proposal that the degradation of 3-chloro-acrylate may be a recently acquired activity of a relatively ancient and catalytically sophisticated enzyme. - GJC

Proc. Natt. Acad. Sci. U.5.A. 102, 16199 (2005).

GEOCHEMISTRY

Reversing Crystal

 GrowthMuch of the chemistry and dynamics of Earth's surface depends on the dissolution of minerals: It determines the composition of soils, rivers, and oceans and affects the amounts of major gases, such as CO_{2}, in the atmosphere. Rapid dissolution weakens rocks, facilitating erosion, and dissolution and corrosion are critical in evaluating the performance of engineered structures. Various data have implied that the dissolution rates of many minerals are complex functions, depending subtly on interacting waters, for example.

Dove et al. show, both theoretically and through experi-

CONTINUED ON PAGE 947

Advanced Quality. Reliable Performance. Better Oligos.

100\% Quality Control, 100\% of the Time

0ur quality standards are so high, we guarantee every oligo will work, every time. Just choose your oligo. and 'we'll select the best quality control procedures to ensure both accuracy and consistency. When we synthesize complex oligos, we will use a combination of state-of-the-art anialytical techniques to guarantee performance. Here are just a few of the ways we lead the world irn quality control:

- MALDI-TOF Mass Spectrometry: Verified composition.
- Electrospray Jonization Mass Spectrometry (ESI-MS): Validated composition for oligos longer than 50 bases
- Capillary Electrophoresis (CE): Guaranteed consistent measurement of purity.
- Polyacrylamide Gel Electrophoresis (PAGE): Quality tested purity and oligo length.

For our latest insights on oligo quality and our performance guarantee, please visit: sigma-aldrich.com/oligos_iso

SIGMA

GENO§YS
ments, that for quartz, and likely for other silicate minerals, well-developed theories of crystal nucleation and growth can be used to understand dissolution.
Nucleation theory involves four parameters: temperature, oversaturation, and two parameters that describe the energy and kinetics associated with a step on a growing crystal. The authors derive the analogous equations for dissolution at dislocations and vacancies, and show that the theory fits well with experimental data for quartz, feldspar, and a common clay mineral, dissolving in waters under a range of pH and salt conditions. If the result holds across a full range of minerals, it would allow the prediction of dissolution and corrosion under a variety of conditions and temperatures. - BH

Proc. Natl. Acad. Sci. U.S.A. 102, 15357 (2005)

APPLIED PHYSICS

Patterns of Light

Polymers have found use in the fabrication of optoelectronic and magnetic devices and as inexpensive, flexible, and lightweight templating materials. Patterns are created through the solvent or by thermally driven phase separation of a blend of homopolymers or block copolymers. One problem with using homopolymers is that it is difficult to
create large areas that are defect-free yet retain precise patterning on a much smaller scale. Block copolymers are better for achieving this, but changes in the pattern can require the synthesis of a new copolymer.

Travasso et al. describe an alternative method for creating materials that are spatially patterned on the submicrometer scale and are defect-free on the millimeter to centimeter scale. They consider a ternary $A / B / C$ blend of immiscible polymers. Polymers A and B are chosen so

that the extent to which they interact or separate can be tuned by exposure to light. Initially, a uniform light source is used to create a homogenous mixture of A and B. By rastering over the sample with a higher-intensity secondary beam, defects in the local pattern can be annealed out. Polymer C is chosen to migrate to areas illuminated by the higher-intensity light. Thus, it is possible to write regions of polymer C onto a spatially patterned AB film. - MSL

Langmuir 10.1021/la052511a (2005).

Highlighted in Science's Signal Transduction Knowledge environment

Sclence's

Bacterial Pheromone for Sex and Abstinence
Bacteria can transfer DNA through conjugation, and the transfer of these extrachromosomal elements contributes to virulence and antibiotic resistance. Chandler et al. report that in Enterococcus faecalis, a mammalian pathogen, the same pheromone that stimulates a donor bacterium to initiate conjugation with a plasmid-free recipient is also produced by the donor itself and regulates its sensitivity to the recipi-ent-produced pheromone. The bacterial chromosome encodes the pheromone (cCF10), so both donor and recipient can produce this molecule; to prevent conjugation with other donors, donor cells have two mechanisms for suppressing the response to the endogenously produced pheromone. One of the conjugation inhibitors is a secreted inhibitor protein, iCF10, which binds and sequesters secreted cCF10, and another is the membrane protein PrgY, which degrades or binds CCF10 as it is released. Using mutant bacterial strains that lacked functional cCF10, Chandler et al. show that cCF10 produced by the donor cells stimulates the production of iCF 10. Donor cells grown in human plasma or in vivo also produce the plasmid-encoded aggregation factor Asc10, which contributes to cellular invasion and virulence of the bacteria. Albumin was identified as the plasma protein that bound ICF10, thereby shifting the balance between ICF10 and CCF 10, allowing self-induction of the conjugation genes, including the one encoding Asc10. - NRG

Proc. Natl. Acad. Sci. U.S.A. 102, 15617 (2005).

Adenovirus Purification in only 2 hours

Purification of up to 3×10^{13} adenovirus particles from 500 ml cell culture

Kits available for in-vitro

 and small scale in-vivo use
patented membrane

 adsorber technology

Contact Vivascience

International	+4951152487560
Europe	+491802848201
USA	+18774522345
Email	into@vivascience.com
WeD	www.vivascience.com

Science

1200 New York Avenue，NW

 Washington，DC 20005Editonial：202－326－6550，FA× 202－289－7562 News 202－326－6500，FAX 202－371－9227

Bateman House，82－88 Hills Road
 Cambridge，UK CB2 1LQ

+44 （0） 1223326500 ，FAX＋44（0） 1223326501
SUBSCRIPTION SERyces for change of address，missing issues，new orders and renewals，and payment questions：800－731－4939 or 202－326－6417，FAX 202－842－1065．Mailing addresses：AAAS， P．O．Box 1811 Dantury CT O6R13 or ASAS Mcmbor Sanvices， 1200 New York Avenue，NW，Washington，DC 20005
Institutional Site Licences please call 202－326－6755 for any questions or information
REPRINTS：Author Inquiries 800－635－7181
Commercial Inquiries 803－359－4578
Corrections 202－326－6501
Prmissions 202－326－7074，FAX 202－682－0816 Mamerer Benefts Bookstore：AAAS／BarnesandNoble．com bookstore www．aaz．org／bn；Car purchase discount：Subaru VIP Program 202－326－6417；Crodit Card：MBNA 800－847－7378；Car Rentals \＃AA1115；AAAS Travels：Betchart Expeditions 800－252－4910 life lrwince：Seabury \＆Smith 800－424－9883，Other Benefits Life Insurance：Seabury \＆Smith 800－424－9883；Other Benefits AAAS Mcmber Scrvices 202－326－6417 or whwaassmember．org
science editors＠aaas．org（for general editorial queries） science letters＠aaas．org（for queries about letters） science＿reviewselaasorg（for retuming manuscript revicws） science bookrevs＠anas．org（for book review queries） Published by the American Association for the Advancement of Science（ $A A A S$ ），Science serves its readers as a forum for the prosentation and discussion of important issucs related to the advancement of science，including the presentation of minonty or on which a consensus has been reached Accordingly all aticles published in Science－including editorials，news and comment and book reviews－are signed and reflect the individual views of the authors and not official points of view adopted by the AAAS or the institutions with which the authors are affiliated．
AAAS was founded in 1848 and incorporated in 1874．Its mission is to advance science and innovation throughout the world for the benefit of all people．The goals of the association are to：foste enhance international cooperation in science and its applications promote the responsitle conduct and use of science and technology； foster education in seience and technology for everyone；enhance the science and technology workforce and infrastructure；increase public understanding and appreciation of science and technology and strengthen support for the science and technology enterpnse．
Information for Contributors
See pages 135 and 136 of the 7 January 2005 issue or access www．sciencemag．org／feature／contribinfo／home．shtml

соітоз－v－c I＝－Donald Kennedy
cx：cut ve $こ=$ tor Manica M．Bradford
ZE, TV ITCRS VEWS $\equiv \mathrm{F}$ TCR
R．Brooks Hanson，Katrina L．Kelner Colin Noman
Emidorial supervisuhy seniokedmoksBartara jasny，Phillip D．Szuromi；sed ior emtoriferspectives Lisa D．Chong；semor edrors Gilbert J．Chin，Parnela J．Hines，Paula A．Kiberstis（Boston），Beverly A Purnell L Bryan Ray，Guy Riddihough（Manila）， H ．kesse Smith，Vald a Vinson，David Voss；ASSCoate Wills：contienting eotcr lvan Amato：Associate onume edror Tara S

 sENIOR COPY EDTORS leffrey E Cook，Harry lach，Barbara P Ordury copy eators Cynthia Howe，Alexis Wynne Morul Jennifer Sills，Trista Wagoner EaTORALL coorbinators Carolyn Kylc，Beverly Shields；pueura tonassitantsRamatoulaye Diop，Chris Filitreau di S Granger jaffroy monsssstants Ramatouljyc Diop，Chnis Filiatreau，Joi S．Granger，Jeffrcy Wynr emropiol assistamts E Annie Hall Lauren Kmec，Patricia M Moore，Brendan Nardozzi，Michoel Rodewald；ExEcumve assistant Sylvia S．Kihbra；admnsthatve sumont Patricio F．Fisher
News semor corpespondent Jean Madj；defuty news edtors Robert Coontz，Jeffrey Mervis，Leslie Roberts，John Travis，conntrebunnc edrops Elizabeth Culotta，Polly Shulman；Newswraress Yudhijit Bhattacharioc， Adrian Cho，Jennifer Couzin，David Grimm，Constance Holden，Jocelyn Grep Miller，Elizatecth Pennisi，Robert F．Service（Pacific NW），Erik
 Marcia Barinara（Berkeley CA）Bary A Cipra，Jon Cohen（San Diero CA）Daniel Ferber Ann Gibbons，Robert Irion Mitch Leslie （NotWatch），Chares C．Mann，Evclyn Strauss，Gary Taubcs，Inerid Wickolgron Copy Richardsor aminitratue support Schemaine Mack Fannie Groom RNMPEAU5．Berkeley CA．510－652－0302．FAX 510－652－1957 New Empland：207－549－7755，San Dicgo，CA－760－942－3252，FAX 760－ 942－4979，Pacific Northwest 503－963－1940
Production director James Landry；semior mamager Wendy K．Shanki assistant manacer Rebecca Doshi；sende sfeciausts Jay R．Covert， Chris Redwood Preflight director David M．Tompkíns；manacier Marcus Spiegler，speciaust Jessie Mudjitaba
Art director Joshua Moglia；associate art director Kelly Buckheit； ilustratars Chris Bickel，Katharine Sutliff；senion art associates Holly Bishop，Laura Creveling，Preston Hucy；associate Nayomi Kevitiyagala；PHOTO RESEARC
schence International
EUROPE（sciencrescience－int．co．uk）EDTORIAL．INTERNATONAL MAMAGIMG edtor Andrew M．Sugden；SEnIOR EDToppperspectives Julia Fahrenkamp－ Uppenbrink；senior edrors Caroline Ash（Geneva：＋41（0） 222346 3106）．Stella M．Hurtley，lan S．Osborne，Stephen J．Simpson，Peter Stern；associate edtor joanne baker edropjal support Alice Whaley； Deborah Dennison a．DMIMISTRATIVE support lanet Clements，Phil Marlow，fill Whitci，News：INTERMATONAL NEwseditor Eliot Marshall DEPUTY News edrok Danicl Clery；correswandent Gretchen Vogel（Berlin：＋49 （0） 302809 3902，FAX +49 （0） 302809 8365）；CONTRI日UTNO CORRESPONDENTS Michacl Balter（Paris），Martin Enscrink（Amsterdam and Paris）；Intean Michael Schirber
Asia Japan Office：Asca Corporation，Eiko Ishioka，Fusako Tamura， 1－8－13，Hirano－cho，Chuo－ku，Osaka－shi，Osaka，541－0046 Japan； +81 （0） 662026272 ， $\mathrm{FAX}+81$（0） 66202 6271；asca＠os．gulf．or．jp japan news buredu：Dennis Normile（contributing correspondent，+81 （0） 333910630 ，FAX 81 （0） 359363531 ；dnomnile ${ }^{(0)}$ golcom）；CHINA refpesemtative Hao Xin，+86 （0） 1063074439 or 63073676 ，FAX +86 （0） 1063074358 haoxin＠eearthlink，net；southasia Pallava Bagla（con－ tributing correspondent +91 （0） 1122712896 ；pbagla＠vsnLcom）； AsA Richard Stonc +6626625818 （rstonce9assorg）
＝xic．．tiv：pusl sile Alan I．Leshner Uき．5－1E：Beth Rosner
 Marlene Zendell；manacier Wiylon Butler，systems speciaust Andrew Vargo：speciausts Pat Butler，Laurie Baker，Tamara Alfson，Karena Smith，Vicki Linton；arcuatiomassocuate Christopher Refice

Business Operations and Administration director Deborah Rivera－ Wienhold；business manacer Randy Yí semor business amalyst Lisa Donovan；business amalyst Jessica Tierney；financial amalyty Michael LoBuc，Farida Ycasmin；hights and pesmissions：administaator Emilic David；associate Elizabcth Sandler，marketno：directar John Mcyers； marketing managers Darryl Walter，Allison Pritchard；Marketing associates Julianne Wielga，Mary Ellen Crowley，Catherine catherston；director of internatonal marketinc and hechuitment advertisimg Deborah Harris；international marketing manaGer Wendy Joson Hannaford；site license sales dikectie Tom Ryan；saies AND customes exvie Mchan Dossani，Kiki Forsythe，Catherine Holland， Wendy Wise：Eiectrom cmeda：Manager Lizabeth Harman；Production associantes Sheila Mackall，Amanda K．Skelton，Lisa Stanford， Nichele Johnston；APPUCATONS DEVEDPER：Carl Saffell

ADVERTIING DIRECTOR WOPLOMDEAD 5ALES Bill Moran
Product（science＿advertising（ians．org）：MIDWEST Rick Bongiovanni： 330－405－7080，FAX 330－405－7081－wEst cOASTrw．CANADA B．NEil Byylan（A5scoiate Director）：650－964－2266，FAX 650－964－2267 EAST COATfE CANADA Christopher Breslin：443－512－0353，FAX $443-$ 1782752530 FAX 444 Traccy Pocrs（Associate Dinector）：+44 （0） 102 （0） 332355961 FAX 81 （ 0 ） 332355052 I501 My $+81(0) 332355961$ ，FAX＋ 81 （0） 332355852 Iskall lessica Nachlas ＋9723 5449123 －traffic manhaer Carol Maddoci shies coordinatop Dciandra Simms
CLASSIAED（advertise＠sciencecareers．org）：U．5．5ALES DIPECTOR Gabrielle Boguslawski：718－491－1607，FAX 202－289－6742；IMsIDE Sales manaler Daryl Andcrson：202－326－6543；WEST COAST／MIDWEST Kristinc von Zedlitz 415－956－2531；EAST COAST Jill Downing： 631－580－2445；CAMADA，Meetincs amd anmouncements Kathleen Clark 510－271－8349；ume a．D sales Emnet Tesfaye：202－326－6740；shles CoORDINATORS Erika Bryant；Rohen Edmonson Christopher Normile， joyce Scott，Shirley Young：inteanational sales manacier Tracy Holmes +44 （0） 1223326525 ，FAX +44 （0） 1223 326532；shles Christina Harrison，Svitlana Barnes；sales assistant Helen Moroncy AAAN：Jason Hannaford：＋81（0） 52789 1860，FAX +81 （0） 52789 1861；production：mamager Jennifer Rankin；assittant mamacer Deborah Tompkins；associates Christine Halli Amy Hardcastle； pubucations assistants Robert Buck；Natasha Pinol
maks botid of directors retirnng presidemt，chair Shirley ant Jackson；president Gilbert S．Omeñ；president－eleg John P．Holdren treasurer David E．Shaw；chief executive offcer Alan I．Leshner eoaso Rosina M．Bierbaum；John E．Buris；John E．Dowling；Lynn W．Enquist；Susan M．Fitzpatrick；Richand A．Meserve；Norine E． Noonan；Peter J．Stang；Kathryn D．Sullivan

DIAAAS
AdVancing science，serving society

Senior Editorial Board

John I．Brauman，Cheir，Stemfordurn Richard Losick，Halvard Uni\％，
Robert May，Unini／of Oxford Marcia McNutt，Morkercy Buy Aquuriviom Rewserch if insl． Linda Partridge，Univ，Colege Lundion Vera C Rubin，Camlegia bistitution of Wassiongton
Christopher R．Somerville，Casmegia institution Christopher R．Somerville，Carnegie institution
BOARD OF REVIEWING EDITORS R．McNeill Alexander，Leeds Ljini． Richard Amasino，Ustivo of Wisenrisin，Mawhsun
 Kristi S．Anseth，DiN．of Colorato
Cornalia 1．Bargmann，Rockefeler Unir Brenda Bass，inviv．of Utzar Ray H．Baughman，Uniw，of Toxas，Dallas，
 Ton Bisseling，Vageriingen Univ， Mina Bissell，Lawrefre Gerkelyy Nutidrie！Leb Peer Bork，EMABL
Dennis Bray，thriv．of Cambridge
 Joseph A．Burns，Curged Uni．\％．
William P．Butz，Puptilution Refersine Bineai Doreen Cantrell，Univ．of Dundoe Peter Carmaliet．Univ／u／Leukin．VG Gerbrand Cader，Mis
Mildred Cho，Stanfont inn
Dovid Chapham，Cbideren＇s Hospilu！，\＆overn David Clary，Oxpom Uniyersity
J．M．Claverie，OviRs，Marseile Jonathan D．Cohan，Privestern Usik． Robert Colwell，Univ．of Connecticut

```
Peter Crane，Royal Botanic Candons，Kew F．Fleming Grim，Univ，ofivirconsin william Cumberland，UCLAA
```



``` Edward Denc．Won：of Virg Mobert Desimone，Mj John Difflay，Cugreur Reszurch UR Julian Downward．Cincer Rescurch UK Denis Duboule，inniv．of Geneva Chistopher Dye，WHO Richard Ellis，Cal Tech
```



``` Barry Everitt，isic．of Cambindo Paul ©．Fatkowski，Reitgers Upiv： Ernst Fehr，Uinv．of Zurich Tom Fenchel，Uoviv：of Copenghagein Jeffrey S．Flier，Harcand Modiral Scivot Chris D．Frith，Unir Colfcge Lorders Mary E Gatvin，Urim．of Dechwors Don Canem，ision of California，SF John Gearhart，Jobins Fhugkins Upir
```



``` Christian Hasss，iudyig Maximpians Univ． Chris Hawkesworth，Univ．of Bristol Martin Heimann，swux Pluscek snsict，je James A．Hendier，Miv．of Maryiand Ary A．Hoffrmann，La inole Usioy Evelyn L Hu，Uniw，of Caijonia，SB
Meyer B．Jackson，Uni\％of Wisxuisin swed schuo！ Stephen Jackson，Univ．of Camjoridge Daniel Kahne，Harvand Univ． Bernhard Kaimer，Max Plenick krosl．，stitiltgark
```

```
Alan B. Krueger, Princoton UniN.
Antonio Lanzavecchin, fmit.of Res. in Blumuefrime
Anthony J.Leggett, Uni#. of flimuis, Urbure Champuign
Midhael j. Lenardo, N/ASD, N/\H
```



```
kichard Losick,Haryand U/iN.
Andraw P. Mockenzie, Upiv: uf SL. Anidiriws
Raul Madariaga, frofolvommate 5upére:ure, Paris
Nick Maizels, Ubir: uf Loitrburg
```



```
Gueorge M. Martin, Owhl: of Wh,thingluni 
Virginia Miller, Vassingtonn Univ.
```



```
Naoto Nagaosa Univ. uf luky
James Nelson, StantorgUrim, 5choof of Med.
Rooland Nolte, Ghiv.uf Njimzycri
Helga Nowotmy, Eumopean Revearmi/\,yisory Boant
Eric N. Olson, Upiv: of fcxus, SV/
rin O'Shea, Univ. of Cijfonvia, SF
ohn Pandry, fmperra!'Colkge
Philippe Poulin, CN,5
```



```
Colin Renfrew, isin. of Camloridge
Trevor Robbins, Univ, of Cumbriblgc
```



```
Edward M. Rubin, Liwrumce Berkcky Natunalhus
DavidG. Russell, Come's Unin.
Gary Ruvkun, Muss: Gicnerul/ Hospilu
J. Roy Sambles, Univ. of Exeter
Philippe Sansonetti, bsstitut Pastour
```



```
Georg Schulz,Allwerl Luchwigs Uswersikil
Paul Schulze-Lefert,Max Pianc.k brst., Coiggne
```

Terrence J．Sejnowski，The 5alk bustitute George Somero，5tanfori Unil． Joan Staitz，Yule Upir：
Edward I．Stiefel，Priskcelug Unis， Thomas Stocker，Onv．of Bern Jerome Strauss，Univ．of Pernisyvania Mor Contor Glann Telling Gris Usik．of lokyo Marc Tessier－Lavig．Ufe，Cenenterters Craig E．Thompson，Unij．of Pormsyivania Michial van der Klis，Alraspomitul trob．uf Amblerdem Darek van der Kooy，Unidy of loro：
Bert Vogelstein，jofins Hoph Christopher A．Walsh，Hianant Medical 5ciool Christopher T．Walsh，Hurrarsi MWelice！Schuol Graham Warren，化k Unith bchuolef Mod． Fiona Watt，impuria！Cirreer Resserch runis Julia R．Weertman，Niorthwestern Univ． Daniel M．Wegner，Maryant Untiversity R．Sanders williams，Dike Universily Ian A．Wilson，Te S．ripps Res．bist． Jerry Workman，Stowors inat．for Modical Reseanch John R．Yatas ill，she Scrippos Res．Sisis． Martin Zatz，NNMHS，Nisi
Walter Tegtgänsberger，Max Planck bist．，Munich Huda Zoghbi，Bayor Coffege of Mosicine．

BOOK REvIEW BOARD

David Bloom，fiarrard Upire，
 Richard Shweder，
Robert Solow，
， $1 T$
Ed Wasserman，Dupont Lewis Wolpert，idiv．Coliege．iondon

EDUCATION

Brush Up Your Einstein

The 100th anniversary celebrations for Einstein's special theory of relativity are winding down, but you can still bone up on his ideas at the tutorial Einstein Online from the Max Planck Institute for Gravitational Physics in Potsdam, Germany. The Elementary Einstein section gives beginners a quick tour of special relativity-which posited that time and length vary with speed-and general relativity, which added gravity to the picture. The section also probes some of relativity's consequences and predictions, including gravitational waves, undulating spacetime distortions that researchers haven't yet measured directly. (Above, a simulation shows gravitational waves from two merging black holes.) Spotlights on Relativity tackles questions such as whether the universe contains more than three dimensions, a prediction of string theory. The site's glossary defines more than 250 relativistic terms.
www.einstein-online.info/en

Out of the Kiln

Ceramics may bring to mind those lopsided pots and lumpy plates children make in grade school. But so-called advanced ceramics show up in everything from armor for military vehicles to bone implants. This site* from the University of Dayton in Ohio can help students and researchers understand how the fine structure of these newfangled ceramics determines their properties. The Digital Library of Ceramic Microstructures houses more than 900 close-ups of materials such as this wadeite crystal from a flat-panel display (right). The collection also includes examples marred by corrosion, oxidation, or other damaging processes, helping users grasp how the materials wear. A similar library" from the University of Cambridge in the U.K. stashes nearly 800 images of ceramics, metals, foams, and other stuff. For materials science teachers, the site also offers a host of lessons and lab exercises.
*www.udriudayton.edu/dlcm/Home.asp
${ }^{\text {i }}$ www.msm.cam.ac.uk/doitpoms

FUN

From Earth to the Moon

The NASA software World Wind can whisk you on a virtual trip to anywhere on Earth (NetWatch, 13 May, p. 933). Now, you can tour the moon with a new version of the program that uses data from the Clementine spacecraft, which mapped the lunar surface in 1994.
worldwind.arc.nasa.gov/moon.html

RESOURCES

Keeping Tabs on Rare Diseases

Doctors have recorded only about 100 cases of Kabuki syndrome, a congenital form of mental retardation. The condition got its name because patients' facial featuresincluding arched eyebrows and elongated eye openingsresemble the makeup style in Japanese Kabuki theater. At Orpha.Net, you can find out more about Kabuki syndrome and hundreds of other disorders affecting no more than one person out of 2000. Researchers can search for information on a particular disease and pull up a description of the symptoms and underlying cause. The entries also record orphan drugs, treatments for rare diseases that are unprofitable to manufacture, and link to research projects and clinical trials around the world. The site, which has information in six languages, is sponsored by the European Commission, the French government, and other organizations.
www.orphanet

EDUCATION

Sick at Heart

Looking for a tutorial on the role of fat-ferrying molecules such as high-density lipoprotein (below) in inflammation? Curious about how hypertension fosters kidney disease? These sites from the Baylor College of Medicine in Houston, Texas, offer a wealth of information about high blood pressure and atherosclerosis. Although aimed at doctors, both can help researchers and students bolster their knowledge of these heartbreakers. For example, Lipids Online ${ }^{*}$ features more than 30 slide shows on topics such as metabolic syndrome, a collection of symptoms including out-of-whack lipid levels and excess abdominal fat that promotes heart attacks and strokes. Visitors can also watch videos of lectures by experts in the field or read commentaries on new findings. At Hypertension Online, ${ }^{\dagger}$ you can peruse updates on the latest drug trials and screen an animation that illustrates how high blood pressure injures the heart.

* www.lipidsonline.org
i www.hypertensiononline.org

Send site suggestions to netwatch@aaas.org. Archive: www.sciencemag.org/netwatch

ScienceCareers.org now with Next Wave

ScienceCareers.org is the leading careers resource for scientists. And now it offers even more. In addition to a brand new website with easier navigation, ScienceCareers.org now includes Next Wave, the essential online careers magazine. Next Wave is packed with features and articles to help advance your science career - all for free.

- Hundreds of job postings
- Career tools from Next Wave
- Grant information
- Resume/CV Database
- Career Forum

WWW. sciencecareers.org

ScienceCareers.org

We know science
\IAAAS

This Week

Pandemic or Not, Experts Welcome Bush Flu Plan

The Bush Administration's proposed flu plan, calling for $\$ 7.1$ billion to help prepare the nation for a dcadly influenza pandemic, is generally winning plaudits from public health experts-hut not neccssarily because they think a pandemic is imminent. Even if no such disaster materializes, they say, the plan will finance a much-needed overhaul of the nation's regular flu vaccine infrastrncture.

When he announced the initiative last week, President George W. Bush noted growing concerns that the H 5 N 1 avian influenza now spreading west from Asia could acquire the ability to be transmitted from human to human. In caveats sometimes lost in general press accounts, Bush and other officials emphasized that H5N1 might not morph into a pandemic strain. A plan is needed, they say, to combat the emergence of any superstrain of human influenza, an event that has happened three times since 1900 and that many think is inevitable in the next few years.

The biggest chunk of the money, $\$ 2.8$ billion, would be spent on what Bush called a "crash program" to speed cellbased vaccine technology. The goal is to be able by 2010 to manufacture a new vaccine for all Americans within 6 months should a pandemic strike Another $\$ 2.5$ billion would be used to stockpile existing vaccines and antiflu drugs. The two other components of the strategy are glohal surveillance and helping federal and state agencies prepare (see table). The finds would be appropriated all at once hut spent over several years.

The existing method for manufacturing flu vaccines is outmoded and slow. Virus used to make fll vaccine is grown in eggs, which
have to be ordered in advance, and the entire process takes 9 months. The Administration's plan aims to accelerate the production of flu vaccines by growing seed viruses in cell cul-

Precautionary principle. President Bush is calling for $\$ 7.1$ billion to prepare the nation to deal with a possible influenza pandemic, which some experts think is inevitable.

Bush's Pandemic Flu Proposal

Cell-culture vaccine manufacturing	$\$ 2800$ million
Purchasing influenza vaccines	$\$ 1519$ million
Stockpiling antivirals	$\$ 1029$ million
Research on new antivirals and vaccines	$\$ 800$ million
Pandemic preparedness (excluding states)	$\$ 544$ million
Helping countries detect and	
contain outbreaks	$\$ 251$ million
State pandemic plans	$\$ 100$ million
Other	$\$ 9.4$ million
TOTAL	$\$ 7.137$ billion

involve finding a cell line in which the virus grows well and optimizing it for growing high yields in $100,000-\mathrm{liter}$ fermenters. "A Jot of it is empitical," says Gary Nabel of the National Instinte of Allergy and Infectious Diseases in Bethesda, Maryland. Any vaccine would also have to go throngh clinical trials for safety and efficacy, and the production process must meet regulatory standards.

Although "it's arguable" whether cellbased technology will shave much off the production time, it will allow "surge capacity" to make larger quantitics, says Bruce Gellin, director of the National Vaccine Program Office at lillS, beeause companies won't be limited by the available supply of eggs. The target is 600 million vaccine doses, two per person.

The plan also calls for stockpiling available vaceines and drugs. The government has alreaty funded two companies to manufacture an experimental human H 5 N 1 vaccine. Depending on how much the virus changes. this vaccine might offer some protection should 115 N 1 acquire the ability to infect people easily. About $\$ 1.5$ billion is slated for HHS to buy 40 million doses (enough for 20 million people) by 2009 and for the Defense Department to buy vaccine as well. Bush also wants Congress to pass legislation to shield vaccine companies from lawsuits. Some Democrats oppose that step, but "you will never get companies to make hundreds of millions of doses" of vaccine without it, says immunologist Paul Offit of the University of Pennsylvania.

Another $\$ 1$ billion would buy enough of the antiviral drugs Tamiflu (oseltamivir) and Relenza (zanamivir) for 25% of the population. It is unclear how well Tamiflu would work against H5N1, HHS Secretary Michael Leavitt notes, but it is the only stopgap measure until a vaccine is ready. Similarly, the 25% figure is arbitrary - "pulled out of a hat," says modeler Ira Longini of Emory University in Atlanta, Georgia. However, he says, because only one-third of the population would probably get sick overall, "for purely therapeutic use, 25% would probably be enough." The Infectious Disease Society of America in Alexandria, Virginia, has recommended a stockpile covering 40% of the population.

Many other countrics plan to stockpile Tamiflu as well, and it's unclear whether Roche, the only manufacturer, can meet demand. Some lawmakers are ealling for Roche to allow other companies to license its Tamiflu technology. Roche said latst month it will work with other companies to meet the

Focus
960
The geography of microbes

962
Public consciousness

Outmoded. Existing methods to make flu vaccine, which involve growing the virus in egg5, are too slow; the plan would support a cell-based altemative.
orders. It says it can fill the U.S. order by summer 2007 and plans to build its first U.S. plant.

Another $\$ 251$ million will be spent on helping other countries build their capacity to detect and respond to outbreaks. And $\$ 644$ million will help federal agencies and states prepare.

A separate, 396-page HHS plan, released on 2 November, describes the country's broad public health strategy and spells out who would receive scarce supplies of vaccines and antivirals. Health care workers, the elderly, others at high risk for influenza, and pregnant women would be among the first in line. If certain groups, such as young adults, prove to be more vulnerable to a pandemic strain, the list would be revised, says epidemiologist Arnold Monto of the University of Michigan, Ann Arbor, who advised HHS in developing the plan. The plan also updates dratt seenarios: released in August 2004, that predict health care costs alone to the United States of $\$ 181$ billion for a moderate pandemic. In a severe pandemic, 10 million Americans could be hospitalized, and 1.9 million could dic.

The Administration's plan quickly drew congressional fire. In several hearings, lawmakers complained that it would provide insufficient money to states, which are
expected to help pay for the antiviral drugs. Others have expressed concerned that the Department of Homeland Security will lead the response, rather than HHS, which has the appropriate public health expertise.

The plan arrives as some experts are questioning whether the likelihood of a devastating pandemic is being exaggerated. Offit, for example, suggests that H5N1, which has sickened 120 people over the past 8 years and killed about half, would have spread from human to human by now if it was going to happen. But he and others are praising the Bush plan anyway because it will help reduce the toll from seasonal influenza. "We're seduced into this tsunami mentality," Offit says. But if you add pup annual deaths from influenza, he says the numbers quickly approach pandemic estimates. Longini agrees: "I'm glad all this is happening, but not because of pandemic flu,"
-Jocelyn Kaiser

HURRICANE KATRINA

Levees Came Up Short, Researchers Tell Congress

When the levecs protecting New Orlcans gave way under the onslanght of Hurricane Katrina, the most common explanation at the time was that they simply weren't built to withstand a storm of such ferocity. But sevcral teams of engincers told a Senate pancl last week that poor design or construction bears much of the blame.

The preliminary reports, from research teams supported by the National Science Foundation (NSF), the American Society of Civil Engineers, and the state of Louisiana, paint a clear picture of how the city's vital floodprotection system failed miserably. "If the levees had done what they were designed to do, a lot of the flooding would not have happened," said civil engineer Raymond Seed of the University of California, Berkeley.

The U.S. Army Corps of Engineers built most of the New Orleans flood-control system in the 1960s, including levees to withstand a Category 3 storm. Katrina blew in as a Category 4 , packing winds up to 217 kilometers per hour. But although the storm surge on the city's cast side, closer to the hurri-

Through the breach. Engineers say the 142-meter gap in the 17th Street levee was caused by a damaged foundation. It took 5 days to close.
(LSU) in Baton Rouge who is investigating the disaster for the state.

The engincers told legislators that they couldn't determine whether the failures occurred because of poor design or bad construction. But their data are sure to play a role in any political recriminations and the cxpected surge of civil suits. "Many of the widespread failures throughout the levee system were not solely the result of Mother Nature," said Senator Susan Collins ($\mathrm{R}-\mathrm{ME}$), chair of the Senate committee on Homeland Security and Governmental Affairs, which conducted the 2 November hearing. "Rather, they were the result, it appears, of human error in the form of design and construction flaws." The corps says that it's too early to draw any conclusions.

LSU scientists issued forecasts on the night before the hurricane struck that New Orleans would flood (Science, 9 September, p. 1656). But they assumed that the levees would not fail and predicted water only in the eastern areas. Van Heerden, using computer. models, and the enginecrs,

NEB your first choice for OEM
 PRODUCING REAGENTS TO DRIVE HIGH THROUGHPUT GENOME TECHNOLOGIES

Choose New England Biolabs as your 0EM partner and gain access to the world's largest selection of recombinant and native enzymes for genomic research - all produced in large scale with stringent specificalims thal ensure success for your hight thrrsughput Lechnologies.

Housed in a new state-of-the-art facility, NEB's USA headquarters includes a modern「ermentation center and fully equipped laboralories for production, quality conlros, producl development and basic research. At New Eniland Biolabs, science has always been a priority and through this approach, NEB's reagents have gained a world-wide reputation for setting the highest or standards for quality and value.

Access an array of reagents that offer 0EM customers the highest purity, remarkable consistency and value. Discover whal many of torday's leading inmowaters in technology development already know - NEB is your first choice for OEM.
 dRIVING HIGH THROUGHPUT GENOME TECHNDLDGIES

- Bal DNis Polyimerase
- Exonucleasel I'E. colii!
- Deep Venl DNA Pulymeriase
- TaqDNA Polỵmerase
- Therminator DNA Polymerase
- DNA Palymerase I, Large ilklenow' Tragment
- Klenow [3" > ! ! exa ${ }^{-1}$
- T4 DNi Polymerase

FOR PRODUCTS THAT MEET YOUR STRINGENT SPECIFICATIONS, CONTACT:

[^1]citing observations, concluded that water reached only 3.7 m up the 4.3 - m levec walls lining the 17th Street and London Avenue canals. Independent modelers, led by civil engineer Joannes Westerink of the University of Notre Dame in Indiana, give similar initial results. "The water should be able to be filled chock-ablock to the top of the wall," said coastal engineer and team member Tony Dalrymple. "[The levees] didn't fill, [but] they failed anyway."

The 17th Street Canal burst through its banks at about 10:30 Monday morning, possibly after water penetrated, eroded, or lubricated the soil below the walls. "It's kind of like a layer cake, and the whole thing slid" says civil engineer Thomas Zimmie of Rensselaer Polytechnic Institute in Troy, New York, a member of the NSF effort. The levee became a bulldozer as the embankment slid 14 meters laterally, lifting and shoving trecs, a shed and a fence as water inshed in all around.

Evidence found at the London Avenue Canal, which breached at about 9:30 a.m., suggested that sand deep below the concrete levee wall had become saturated and unstable, causing the levee to tip. Soil movement, the copps acknowledged in a prepared statement, "could have been a factor" in the breaches. Those failures led to flooding in areas including Lakeview, Gentilly, and downtown. Other breaches, caused by overtopping, led to more inundation.

A findamental factor in the strength of a levec-especially in swampy soil-is the depth of metal sheet piling driven deep below the levec as an anchor. Documents suggested that the shect piling at the London Avenue Canal went about 5 meters downhalf the depth found in other areas. But engineers said they lacked definitive data.

Those testifying proposed several low-cost improvements including filling gaps between

Sand
Washout. An investigative team with the state of Louisiana has proposed three ways in which the 17 th Street levee in New Orleans was undermined and breached during Hurricane Katrina.
levee sections, more consistent constiuction standards, and a national boatd to inspect levees. Van licerden also ealled for strengthening the levees to withstand a Category 5 storm, a more expensive fix. A joint report on the levee system by the corps and other federal agencies is due out in July 2006.
-Eu Kintisch

ITER

Fusion Leaders Make a Diplomatic Choice

Cambridge, U.K.-A Japanese diplomat has been chosen to head the International Thermonuclear Experimental Reactor (ITER) project, the world's most expensive seientific collaboration. Meeting in Vienna this week, representatives of the six international partners in the project- China, the European Union (E.U.), Japan, Korea, Russia, and the United States-tapped Kaname Ikeda to lead the $\$ 12$ billion fision project, which aims to build a reactor to recreate the sun's power source.

Ikeda, currently Japan's ambassador to Croatia, has a degrec in nuclear engincering and has held numerous positions in the Atomic Energy Burcau of Japan's Science and Technology Agency, the Ministry of International Trade and Industry, and the

National Space Development Agency. "He has wide experience and seems to be an excellent choice," says Chris Llewellyn Smith, head of U.K. fusion rescarch.

Since choosing a site earlier this year (Science, 1 July, p. 28), ITER negotiators have heen drawing up an intemational agreement. Although this delicate process may continuc well into next year, an E.U, source says that construction could begin at Cadarache in France as soon as a few wecks from now.

However, delegates in Vienna failed to agree on the inclusion of India as a partuer in the project. India had asked to join in July, but sources say that some ITER partners do not want India to have a prominent role because of its falure to sign the Nuclear NonProliferation Treaty. -DANIEL CLERY

ScienceScope

Hot on the Toxin Trail

David Schwartz, director of the National Institute of Environmental Health Sciences, has previewed a proposed \$4 million program that will spur the development of new technologies to detect, measure, and track toxins both in people and in the environment. If all goes as planned, the Exposure Biology Initiative will develop sensor badges or bracelets to give researchers more precise data linking toxins to health. The plan also calls for techniques that will monitor proteintoxin interactions that may serve as early markers of problems, he reported at last week's Environmental Epigenomics Conference in Durham, North Carolina. Schwartz is setting up a meeting this winter to home in on specific goals, and he hopes to get the initiative up and running in 2006.
-Elizabeth Pennisi

The Endless Battle Over Stem Cells

Advocates for human embryonic stem (hES) cell research are applauding a veto last week by Wisconsin Governer Jim Doyle of a bill that would have banned all forms of human nuclear transfer research. But it's no time to relax, says Sean Tipton of the Coalition for the Advancement of Medical Research, an hES cell research lobby group: The issue is heating up in at least three more states.

In Florida, groups are collecting signatures for competing amendments to the state constitution. One would make available $\$ 200$ million in state grants for research on hES cells; the other would ban state funding for work that "involves the destruction of a living human
 embryo." Both initiatives must collect 600,000 signatures and be approved by the state Supreme Court to make it onto the November 2006 ballot. In Missouri, where several legislative attempts to limit hES cell research have been defeated, former U.S. Senator John Danforth ($\mathrm{R}-\mathrm{MO}$) is heading a committee to collect 150,000 signatures to put a constitutional amendment on next fall's ballot that would specifically allow hES cell and nuclear transfer research. In Ohio, which in 2003 became one of the first states to fund hES cell work with state money, several bills are pending that would limit or even ban such research. "I imagine it will be a busy winter," Tipton says. -Gretchen Vogel

ASTROPHYSICS

Surprise Neutron Star Suggests Black Holes Are Hard to Make

Black holes may be harder to create than previously believed, according to an unexpected discovery made with NASA's Chandra X-ray Observatory. Researchers have long thought that any star more than 25 times the mass of our sun will end its life as a black hole. But Chandra's finding suggests that even a star of 40 solar masses may fail to create one. Because such massive stars are extremely rare, that raises the question of how stellar black holes form at all. "It's a surprising find," says Gertjan Savonije of the University of Amsterdam, the Netherlands.

When a massive star exhausts its nuclear fuel and goes supernova, it blasts its outer mantle into space. The remaining core collapses into a small, dense neutron star or a black hole: a region of space where gravity is so strong that not even light can eseape it. Astrophysicists used theories of stellar evolution to peg 25 solar masses as the threshold above which anything will end up as a black hole. "There's a lot of guesswork involved" says Savonije, because stars blow off varying amounts of gas into space during their lifetimes. Even so, the figure gave

Confounding fate. The stellar giant that produced this neutron star should have ended as a black hole, researchers say. astronomers some idea of what to expect when viewing stellar corpses.

So a team led by Michael Muno of the University of California, Los Angeles, was surprised to find the pulsating X-ray emission
of a neutron star in a young, massive, compact star cluster known as Westerlund 1. In such clusters, the stars are thought to have been born all at the same time, in this case, about 4 million years ago. More-massive stars have shorter lives because they burn more fiercely, so the progenitor of the neutron star (designated CXO J164710.2455216) must have been one of the most massive stars in the cluster. As there are 35 -solarmass stars still around in the cluster, the researchers guess the neutron star progenitor must have been at least 40 solar masses. In a paper accepted for publication in Astrophysical Journat hetters (arxivorg/abs/astrophi0509408), Muno and colleagnes conchude that some of the most massive stars do not become black holes as predicted.

Why not'? Frank Verbunt of Utrecht *

NATIONAL SCIENCE FOUNDATION

Board Suggests How to Thrive Under Stress

When meney's tight, it's important to let the experts call the shots-but make sure they aren't too conservative. That advice comes from the governing body of the U.S. National Science Foundation, which has drafted a long-term plan for running NSF without the promised doubling of its budget. The National Science Board's (NSB's) prescription: Give project managers more leeway, and don't let grants to large centers erode support to individuals.

Coincidentally, the board issued its plan 1 day before a key legislative spending pancl approved a surprisingly generous 2006 budget for NSF. It's generous only in comparison to the president's requested 2.4% boost and earlier congressional action, however: The 3% increase will barely keep the agency ahead of inflation.

Senator Kit Bond (R-MO) originally requested the report as chair of NSF's appropriations pancl. Although his panel no longer has jurisdiction over the agency, NSB chair Warren Washington said the board wanted to reexamine NSF's policies anyway after concluding that eurrent economic conditions had destroyed hopes of a 5-year doubling of NSF‘s budget spelled out in a 2002
reauthorization. "It's still a big disappointment to me that it hasn't happened," Washington says, noting that NSF's budget would be about 50% larger by now if the doubling had begun on schedule.
"But in the meantime, we wanted to emphasize what NSF needs to do to keep the country's basic science enterprise strong."

One essential step, according to the draft plan, " 2020 Vision for NSF" (www.nsf.gov/nsb; NSB 05-142), would be to strengthen the hand of program officers in choosing from among a surfeit of good research proposals. It's part of the board's hunger' for more "transformative" research (Science, 8 October 2004, p. 220): experiments with the potential to radically change a field rather than simply add incrementally to what is known. "Often a program officer will get a mixed set of reviews," says Washington. "We shouldn't allow one negative review to kill a proposal if the program officer thinks that it's worth taking the risk."

The board also weighed in on the neverending debate about the proper balance between the number, size, and duration of grants. It suggested that NSF should fund a larger and more diverse pool of researchers,
even if it means suboptimal funding of individual grants and fewer large awards. And it challenged NSF administrators to "increase the impact" of its science education programs, a portfolio that the Bush Administration has tried to cut sharply in the past 2 years, by doing a better job of applying new research findings to the classroom.

The board's ideas are "perfectly consistent with our initiatives," says NSF Director Arden Bement. Program officers already have the ability to seed novel ideas, he notes. But Bement says he'd also welcome congressional authority to add staff, to relieve the growing workload and allow program officers to be even more creative.

Last week's budget action, by House and Senate conferees, would give NSF an additional \$164 million, for a total of $\$ 5.64$ billion. NSF's research account would grow by $\$ 155$ million, to $\$ 4,38$ billion, and its education programs would drop by only $\$ 36$ million, to $\$ 805$ million, rather than by the $\$ 104$ million cut requested by the Administration. The bill would find all new researeh facilities requested in 2006 except for the high-energy RSVP project at Brookhaven National Laboratory in Upton, New York,
-Jeffrey Mervis

University in the Netherlands says that if the progenitor star had been part of a binary system, its companion could have siphoned off enough mass to keep the giant star from collapsing into a black hole. "Recent evolutionary calculations show that in a binary scenario, you almost always end up with a neutron star," Verbunt says.

Muno agrees that such a scenario is possible, But if the neutron star is still sitting in the
cluster, its bloated binary partner should stil] be around too-yet, Muno says, infrared observations of the neutron star reveal no binary companions more massive than our sun, "It's still important to consider other reasons why some extremely massive stars won't collapse into black holes," he says.
-Govert Schilling
Govert Schilling is an astronomy writer in Amersfoort, the Netherlands.

U.S. HIGHER EDUCATION

Schools Cheer Rise in Foreign Students

The number of foreign students emrolling in U.S. graduate programs has gone up this fall for the first time since 2001. Educators attribute the It/ increase over last year, documented in a survey by the Council of Graduate Schools (CGS), to improvements in visa processing and see it as the reversal of at trend that began after the 2001 terrorist attacks. But they remain concerned that the United States may still be losing its attractiveness as a destination for students from around the world.

The increase, reported by 125 institutions that responded to a survey of 450 schools, comes in spite of a 5% decline in international applications compared to last year. The number of students from China and India-the two largest sending countries-has risen by 3%, and enrollments from the Middle East are up by 11%. Engineering enrollments, a top draw among international students, are up 3%, and the physical sciences recorded a I \% rise.
"Visa problems-the main factor that hobbled enrollments in recent years-are clearly being addressed" says CGS president Debra Stewart, who on a recent visit to the U.S. consulate in Beijing leamed that approvals of student visa applications had shot up to more than 80% from less than 50 \% a year ago. "Things are moving in a good direction:"

But Ileath Brown, CCiS's director of rescarch and policy analysis and the author of the study, finds it troubling that a smaller fraction of international stu-dents- 38% compared to 43%-chose to conroll after being aceepted. "It's possible that some of these students are going to other comntries," says Brown. Stewart says one way for the United States to stay ahead in the global competition for talent would be to make it easier for foreign students with advaneed U.S. degrees to gain permanent residency.

Renewed welcome. Faster U.S. visa processing has boosted graduate enrollments from the biggest pools of international talent and the Middle East.

John Martin of the Federation for American Immigration Reform in Washington, D.C.. thinks that would be a bad jdea. "We think the inereased enrollment of foreign graduate students, particularly in science and math, has discouraged American students from pursuing sejentific and engineering careers," he says.
"Foreign graduate students who end up with science and engincering jobs in this country tend to hold down salary increases in those ficlds, so it's natural for American students to pursue fields like law in which they see greater economic rewards." As a consequence, Martin says, the United States is becoming more and more dependent on foreign scientific talent.

Unlike Martin, most university officials are hoping this year's increase will turn out to be the heginning of an upward trend. Sherif Barsoum of the Office of International Education at Ohio State University in Columbus is particularly encouraged by the numbers from the Middle East. "The post-9/Il perception of U.S. campuses being unfriendly to foreign students seems to be fading," he says.
-Yudhijt Bhattacharjee

ScienceScope

Europe to Cut Lab Animal Tests

European governments and industry plan to reduce animal testing and develop better alternatives. On 7 November, the European Commission (EC) and leading industry associations agreed to cut the number of animals used for basic research, toxicology, and quality control of health products from 11 million a year to 9 million by 2007.

Although lean on specifics, the agreement should also help coordinate research activities to develop animalfriendly methods, such as cell cultures and computer modeling. The parties will work together to facilitate the official validation of methods and ease the regulatory acceptance process. "We have never before had the opportunity to work together in such an integrated manner," says Alain Perroy of the European Chemical Industry Council.

The EC has promised to add an unspecified amount to the $\$ 16$ million it already spends each year on alternative testing methods.
-Xavier Bosch

U.S. Science Budgets Emerge

A month into the new fiscal year, the 2006 budget is finally taking shape, and U.S. science lobbyists are cautiously optimistic. Under a consensus bill passed by a joint House-Senate committee this week, the Department of Energy's Office of Science would receive $\$ 3.63$ billion, a 1% rise over 2005 and $\$ 170$ million more than the White House requested in February. Funding for nuclear bunker-buster research sought by the Pentagon was not granted, and the National Ignition Facility superlaser at Lawrence Livermore
National Laboratory in California escaped a Senate attempt to close it.

Lobbyists also cheered continuation of the National Institute of Standards and Technology's Advanced Technology Program, seen as corporate welfare by congressional critics, and a 9% boost to the president's request for the National Oceanic and Atmospheric Administration, to $\$ 3.9$ billion. NASA will get $\$ 16.5$ billion, the requested amount, and $\$ 260$ million more than last year, although Administrator Michael Griffin told lawmakers last week that a shuttle shortfall of up to $\$ 5$ billion could eat into applied research.

One last concern is a feared 11th hour across-the-board rescission to make room for disaster relief and the Iraq war. "I've seen people saying everybody has to take their medicine," says Robert Boege of the Alliance for Science \& Technology Research in America.
-EL Kintisch

And the 2005 winner is...

Pingxi Xu, M.D., Ph.D.
 University of Texas Southwestern Medical Center

Congratulations to Dr. Pingxi Xu on winning the 2005 Eppendorf \& Science Prize for Neurobiology for elucidating the role played by the odorant-binding protein (OBP) LUSH in pheromone recognition in Drosophila. Dr. Xu's findings suggest that OBPs may do more than simply transfer pheromones to neuron receptors-they may act as coligands, mediating pheromone recognition. Further studies may reveal ways to apply this knowledge to combating and preventing insect-spread disease.

The annual $\$ 25,000$ Eppendorf and Science Prize honors young scientists for outstanding contributions to neurobiology research. Dr. Xu is the fourth recipient of this prestigious award, and he will be honored at a ceremony held during the week of the 2005 Annual Meeting of the Society for Neuroscience.

You could be next.

If you have received your Ph.D. or M.D. within the past 10 years, you may be eligible to win the 2006 Prize. Entry deadline is June 15, 2006. For more information: www.eppendorf.com/prize or www.eppendorfscienceprize.org

EPIDEMIOLOGY

Russian Cancer Study Adds to the Indictment of Low-Dose Radiation

A Cold War environmental calanity appears to be the caluse of a spate of cancers in the Russian heartland. A landmark study this month by USS and Russian scientists blames excess cancers in the Ural Mountains on chronic exposures to radioactivity leaked from a weapons plant a hallf-century ago.

The study is the latest blow to the notion that there is a threshold of exposure to radiation below which there is no health threat (and there might even be a benefit). The results add weight to last summer's report from the U.S. National Research Council, which backed the hypothesis that radiation is risky even at the smallest doses (Science, 8 July, p. 233). Although that conclusion had been inferred from Japanese atomic bomb survivors, the Russian study-along with a recent report revealing an elevated cancer risk in nuclear workers around the globeprovides the strongest direct evidence yet of chronic, low-dose health effects.

Both sets of findings indicate that workplace radiation standards are correct in erring on the safe side. In 1991, the International Commission on Radiological Protection (ICRP) set an annual workplace limit of 20 millisieverts (mSv) per year over 5 years, which assumes there is no safe level. "This is an endorsement of the precautionary approach as a tool for radiation protection," says Lars-Erik Ilolm, director general of the Swedish Radiation Protection Authority and ICRP chair.

The new data come from villagers downstream from the Mayak weapons complex in the southern Urals, victims of the struggle for nuclear supremacy. From 1949 to 1956, they were exposed to a steady stream of plutonium production byproducts released into the Techa River. After the Soviet breakup, U.S. experts-including atomic bomb radiation expert Dale Preston, now at Hirosoft International Corp, in Eurcka, California, and epidemiologist Elaine Ron of the U.S. National Cancer Institute-joined forces with colleagues at the Urals Research Cen-

Low-dose risks. A study of cancers in Muslyumovo (inset) and other villages near the radionuclide-laden Techa River points up the importance of limiting exposure to radiation in the workplace.
ter for Radiation Medicine in Chelyabinsk to scrutinize the health of 25,000 people who lived in 41 villages along the Techa between 1950 and 1952 , when radionctivity releases climaxed, and nearly 5000 people who moved to these commmities between 1953 and 1960 .

The biggest challenge has been getting a handle on individual radiation doses, which remain uncertain. The team has measured strontium90 , the most common downstream radioisotope, in teeth from scores of subjects and conducted wholebody counts of strontium and cesium-137. They have at least

now at the University of Utal, Salt Lake City, who helped with the study's dosimetry.

The figures, although alarming, are in line with the largest study of nuclear power workers cver carried out. A team led by Elisabeth Cardis of the International Agency for Research on Cancer in Lyon, France, pooled data on more than 400,000 plant workers in 15 countries. In this group, 6519 have died from solid cancers and 196 from non-CLL leukemias. The finding suggests that between 1% and 2% of the deaths may be due to radiation, the team concluded in the 29 June issue of the Brifish Medical Jonmal.

It's an "impressive study," says Ilolm. although he and others flagged a shortcoming: Smoking may account for a large share of deaths attributed to radiation. In the study, the risk of smokingrelated tumors-primarily lung can-cers-is much higher than for other solid cancers. Cardis points out that the paper acknowledges smoking as a confounding factor. "Although smoking may play a role in the increased risk of all cancers excluding leukemia, it is unlikely to explain all of the increased risk observed," she says. Future publications will address concerns about the study's methods, she says.

Although the Cardis study has been challenged, exhibit B in the low-dose indictment, the Techa River study, provides corroborating evidence. The two studies come to "practically the same conclusion," says Peter Jacob of the Institute of Radiation Protection in Neuherberg, Germany. That means that the $20-\mathrm{mSv}$ standard is unlikely to budge, despite arguments from industry that it is too stringent. The Russian results are "a setback for those who hope for a relaxation of the standards," says Anspaugh. The United States is one of the few nations that does not use the ICRP standard; it permits exposures up to 50 mSv per year:

In practice, most nuclear industry workers are exposed to far less radiation than the ICRP limit. That's a good thing: The average lifetime dose in the Cardis power plant study was only 19.4 mSv , with less than 0.1% of workers receiving more than 500 mSv . Calculations in the Techa study suggest that the vast majority of villagers received less than 50 mSv of lifetime acenmulated dose to the stomach. In light of ongoing efforts to refine thesc estimates. says Urals center director Alexander Akleyev, cancer risks should be viewed as "preliminary," Jacob agrees: "This is not the final word, he says. -Richard Stone
one strontium measurement for more than at third of the villagers.

According to death ecrtificates, 1842 villagers died from solid tomors other than bone cancer, the prevalence of which would have been skewed by strontium-90. And 49 died from leukemia, not counting chronic lymphocytic leukemia (CLL), which is not thought to be triggered by tadiation. The researchers attributed deaths above the background rate to radiation- 46 from solid cancer (2.5%) and 31 from leukemia (63%). The risks increase with estimated dose, the team reports in the November issue of Radiafion Research. "People were hoping that the risks would be a lot lower,"' says Lymn Anspangh,

News Focus

Researchers have dug up some surprising evidence casting doubt on the long-held belief that microbes are impervious to geographic constraints

Biogeography: Is Everything Everywhere?

How would the world look if marsupials, instead of being confined to the sanctraay and prisen of Australia, hat heen forced to confront every other carnivore, tree-climber, burrower, and grazer on the planet? Our ideas about ecology, evolution, and history would be quite different had they been derived from studying animals that had crossed oceans, mountains, or deserts to seek out suitable environments. Polar bears in the Antarctic? Penguins in Alaska? Chimpanzees in Amazonia? Kangaroos on the Serengeti?

The picture seems far-fetched. Yet for about a century, microbiologists have believed that the organisms they study are unhindered by geographic boundaries, traveling the world and thriving wherever they find their preferred environment-be it hot springs, freshwater ponds, or rotting fir trees. That view gives researchers who study microbes a rather different perspective on the world. As the Dutch biologist Lourens Bass-Becking put it in 1934: "Everything is everywhere; the environment selects."

Or maybe not. In the past few years, many microbial ecologists have come to believe that microbes are not infinitely mobile. BassBecking's dictum is really only "an assumption," says Jessica Green of the University of California, Merced. "It's based on a confusion of hypotheses for facts."

DNA studies have given us a more detailed picture of microhial diversity that, argue some. demands a more nuanced view of
microbial ecology. Those nuances have spawned a debate over what the DNA data actually show, and how a molecular view of microbial diversity can be compared with our species-based view of plant and animal ecology. Answering those questions, in turn, will help scientists better understand the crucial role played by microbes in keeping our ecosystem livable.

On Priest Pot

Bland Finlay of the Centre for Ecology and Hydrology (CEH) in Dorset, U.K., has spent a quarter of a century building up evidence to sup-
port Bass-Becking's view of microbial ubiquity, much of it gathered in a small lake in northem England called Priest Pot. For example, he has found that a mere 25 microliters of sediment from Priest Pot contains 40 of the world's 50 known species of the protozoan Paraphysomonas. What's more, each species' abundance in the sample matches its abundance worldwide. Everywhere he goes, Finlay finds identical ciliates: "There's no convincing evidence for endemic species," he says. "I see the same ones in Scotland, New Zealand, and central Africa."

The main cause of microbes' ubiquity is their vast populations, says Finlay. Although a specific ciliate is extremely unlikely to make a long journey, there are so many of them that some inevitably will hitch a ride via wind, water, a bird's foot, or a clump of floating vegetation. Many can tolerate a wide range of environments-salt- and freshwater, for example-and they have an astonishing ability to hunker down in harsh environments until their moment arises.

Cultured in its native conditions, a gram of Priest Pot sediment yields 20 species of ciliate protozoan. But when Finlay's team tested that sediment in the lab under different conditions-altering salinity, temperature, illumination and so on-it found 137 species. And the total keeps rising. He thinks those findings argue strongly for the idea that the lake contains not only all the species adapted to its conditions but also a "seed bank" of many others that have arrived and survived, but not thrived. Everything seems to be everywhere, even if it is not immediately obvious.
"There is no biogeogra-

Lake effect. Bland Finlay has plumbed Cumbria's Priest Pot for a quartercentury of discoveries involving ciliate protozoa.

But Green believes that our understanding of microbial diversity is too sketchy to support such statements. "[Finlay] has shown that there's similarity at certain points, but the sampling effort on a global scale isn't enough to make these sweeping generalizations," she says. Green is one of a wave of researchers using molecular studies to probe the patterns in microbial diversity. The ability to sequence DNA samples from the environment has allowed scientists to detect far more than the 1% of microbes that can be cultured in the laboratory. It has also revealed how they vary from place to place.

Studying ascomycete soil fungi in the Australian desert, Green and her colleagues have found that the genetic differences between fungi from different locations increase with distance. Others have found that archaea of the genus Sulfolobus living in the hot springs of Yellowstone and Lassen U.S. national parks, for example, are more similar to each other than to those found on Russia's Kamchatka peninsula. "We are beginning to see biogeographic patterns in microorganisms," says Claire Horner-Devine of the University of Washington, Seattle, lead author of a study of New England salt-marsh bacteria with similar results. "There will be organisms that are global and can get anywhere, and you'll also find ones that don't have those ranges."

Biologists studying plants and animals realized 150 years ago that the number of species found in a patch of habitat climbs as the area of the patch increases, a biogeographic pattern called the species-area relationship. A CEH team led by Christopher van der Gast recently argued that the same held for the bacteria living in oil-filled sump tanks in engineering machines and in water-filled tree holes in Amazonia. This seems to contradict the "everything-is-everywherc" view, in which the relationship between a place's area and the microbial species it contains is essentially flat.

One complication is that limited dispersal is not the only thing that could create geographic variation in microbes. A big challenge is to separate the effect of environmental het-crogencity-which everyone accepts will cause biological differences-from divergences caused by dispersal. Finlay and his colleague Tom Fenchel of the University of Copenhagen, Demmark, have argued that van der (iast's trec-hole study found more diversity in Jarger sites because langer sites ane environmentally more heterogeneous, not because they are easier to disperse into or harder for
 bacteria at two high-altitude locations in Chile.
populations to go extinct in.
"The next frontier is to figure out whether the patterns are due to environmental selection or to evolution and diversification," says Jennifer Hughes of Brown University. She says a handful of published studies so far show geographical patterns when environmental differences are controlled for.

Phenotype matters

More vexing is the issue of how to make sense of the molecular data themselves. Some belicve that microbes seem ubiquitous because our view of them is blurry. Many studies assign microhes to different species if their ribosomal DNA is less than 97% identical. If that were done with animals, Green points out, all primates from humans to lemurs would likely be humped into one cate-gory-creating a group with far more cosmopolitan distribution and habits than any of the species erected by traditional naturalists. What's needed she says, is a study that would detect whether and how the patterns in microbial diversity compare with those seen in plants and animals-at scales from a cubic centimeter to intercontinental. She aims to do this for the bacteria in Mediterranean-
fheir diversity and distribution.
The debate about microbial biogeography is about more than how many bacteria can dance on the head of a pin. Microbes support the visible living world and provide trillions of dollars' worth of ecosystem services for free, cleaning air and water and keeping soil fertile and healthy. They are a critical component of efforts to restore degraded ecosystems. As pathogens, they help regulate the populations of plants and animals, and their absence may be one factor behind the success of invasive species.

To understand these processes, says Horne1-Devine, we must understand microbes" ecology and how they will respond to stresses such as climate change and pollution. "To know how we're affecting these communities, we need to know what the patterns in spatial and temporal variations are," she says. Such knowledge will help huild a biology that applies to all life on Earth.
"Comparing microorganisms with plants and animals will highlight where we see patterns and processes that could be the same for all domains of life," says Ilomer-Dcvine, "That would be pretty phenomenal"
-John Whitiel
John Whitfield, a science writer based in London, is the author of the forthcoming book in the Beat of a Heart: The Search for a Unity of Nature.

The Baroness and the Brain

Best known for her popular writing, neuroscientist Susan Greenfield has launched a new center at Oxford to investigate consciousness

Oxford, U.K.-Chatting amicably around a long oval table sit a couple of dozen researchers interested in how the brain works. This is the first gathering of the Oxford Centre for the Science of Mind, an ambitious project involving people with a diverse set of skills and interests. Today's first order of business is to choose a keynote speaker for a conference on consciousness next year. All eyes turn to a commandingly tall woman with leonine features, Director Susan Cireenfield as she throws out a suggestion: "How about the Dalai Lama?" There are chuckles around the room, but it soon becomes clear that Gireenfield is serious-and that she could probably make it happen.

A neuroscientist at Oxford University for 30 ycars, a politician, and celebrity, Greenfield rose through the academic ranks like a bottle rocket, hut she didn't stop there. Over the past decade, she has become a household name in the United Kingdom, the author of 10 popular science books, the host of a TV series about the brain, and the first woman director of London's Royal Institution, a 200 -year-old venue for the public
understanding of science. Along the way, she has been tapped as a scientific adviser by both the U.K. and Australian governments. In 2001, she became a lifetime member of the U.K. House of Lords with real decision-making power.
"She has been immensely encrgetic and effective," says Martin Rees, an astrophysicist and Master of Trinity College at the University of Cambridge, U.K., "expounding and debating scientific ideas and issues to a wider range of audiences than most scientists ever reach:" But critics say Greenfield's ascendancy has been fueled by self-promotion rather than published research. They grumble that she appears to have left real science behind without delivering on the promise of her early ideas.

Science rock star

When it comes to the media, most scientists are shy creatires, preferring the snail's pace of peer-reviewed journals to the glamouror terror-of a 30 -second TV intervicw. Not Greenfield. She comes alive in the spotlight, "I get a terrific kick out of engaging with the public," she says. "As an academic,

Big agenda. Dubbed Britain's "14th most powerful woman" by the press, Susan Greenfield is a skilled attention getter-here in an appeal for new high-tech ventures.
you just sit there with all the deas and have very little influence, ... but I'd rather see my ideas translate to policy that makes a difference in people's lives."

Greenfield's early career gave no clue that the neuroscientist, now 55, would become "the 14th most powerfill woman in the U.K." and one of "the 300 most influential people in the world," as two British newspapers have ranked her. Iler researeh has eentered on a workhorse molecule of the nervous system called acetylcholinesterase (AChE).
"She first made a name for herself with a very bold idea about AC C L ," says Hermona Sored, a neuroscientist at the Ilebrew University in Jerusalem, Israel namely, that the enzyme might be a link between several neurodegencrative diseases-Alzheimer's, Parkinson's, and possibly also motoneuron discasc-"but not as an enzyme", Whereas an enzyme's job is to catalyze a chemical reaction- AChE splits the neurotransmitter acetyleholine into choline and acetic acedGreenfield proposes that AChE does more: It may also interact with proteins to stimulate neuron growth during development, and this pathway may become deranged in the adult brain, she helieves, leading to neuronal death and other symptoms shared by neurodegencrative diseases. "If her idea turns out to be trie, it would be an amazing breakthrough,"says Jcan Massoulic, a neuroseientist at the National Center for Scientific Research in Paris, France. But, he adds, "in my view, it is still not proven that AChE even has nonenzymatic roles."

Everything changed for Greenfield in 1994 when she was invited to give the annual Royal Institution (RI) Christmas lecture on television, the first woman to do so. Soon after that lively presentation on brain function, she says, "one thing just led to another." She began writing regular columns for newspapers, weighing in on hot topics such as whether marijuana should be legalized-Greenfield believes not-and producing popular books about the brain. Greenfield became a familiar face on television. She even appeared in the U.K. tabloid magazine Hello!

In 1998, Greenfield was tapped to be director of the RI-again, the first woman so honored-running Britain's oldest institute for showcasing science. In 2001, a committee of U.K. politicians appointed her a member for life of the House of Lords as part of an effort to include nonpolitical experts in the legislative branch. Now known as the Baroness of Otmoor in the County of Oxfordshire, Greenfield can vote on laws, although she says her "most important contribution there is to take part in debates."

But (ireenfield is interested in more than talk; she wants to put ideas into action. One of her initiatives, called the Science Media Center, offers briefings for journalists on scientific issucs and rallies rescarchers willing to be interviewed on short notice, "It makes a tremendous difference," says David King, a chemist at the University of Cambridge and the U.K. government's chief science adviser, particularly with fast-breaking news, such as the current threat of an avian influenza pandemic, in which disinformation can cause panic.

Greenfield is now working on a plan to establish a Science Peace Corps in the United Kingdom modeled on the U.S. Peace Corps. Scientists would spend a year or two in the developing world, broadening their horizons while sharing their expertise.

Meanwhile, Greenfield, who is single, says she still maintains a research laboratory at Oxford, when she isn't flying around the world to collect honorary degrees- 28 so far-or achievement awards. Her day begins at 5 a.m., but still, she says, "life is too short."

At odds with her peers

Widely admired by the public, Greenfield nevertheless gets mixed reviews from her scientific peers. Although she has become one of the United Kingdom's high profile "science ambassadors," says King, she has taken an unnsual path. "A good comparison," he says, "is Lord [Robert| May," an Oxford biologist who was also appointed to the House of Lords in 2001. "Everyone considers him to be one of the most important epidemiologists in the world, but when people are asked about Susan's background, they faller."

Greenfield's new venture into the field of consciousness research is raising more hackles. Her Oxford Centre for the Science of Mind (OXCSOM) has received $\$ 2$ million in start-up funding from the U.S.-based Templeton Foundation (Science, 21 May 1999, p. 1257), and she could reccive a further $\$ 10$ million next year. Greenfield admits she has never done an experiment involving consciousness, although she has described her theory for how the activity of neurons creates individual minds in her popular books, which she describes as "the work 1 am most proud of."

In a nutshell, Greenfield argues that consciousness is generated by "highly transient assemblics of brain cells that wax and wane in size, from one moment to the next," and the larger the assemblies, the higher the level of conscionsness. She uses the analogy of a stone dropped into a pond, with associations between ncurons rippling out from a "trigger:"

Greenficld gave a speech about her idea at the annulal meeting of the Association
for the Scientific Study of Consciousness. held at the California Institute of Technology (Caltech) in Pasadena in June. "It went extremely well," she told Science after the meeting, but some in her audience painted a different picture. Patrick Wilken, a psychologist at Otto von Guericke University in Magdeburg, Germany, and one of the

conference organizers, says people complained that Greenfield's lecture was insubstantial-for example, some felt that "talks like this lower the perecption of consciousness as a serious field of academic study," Christof Koch, a Caltech ncuroscientist who chaired the meeting, calls Greenfield "an excellent public speaker" but says her talk had "wery little science" and focused more on metaphors than testable hypotheses.

Greenfield calls the assessment unfair and claims she is being "held to a different standard" from others, perhaps "because l'm a neuroscientist and most of the others were cognitive scientists."

Wilken disagrees. A decade ago, "there were a number of rescarchers asserting that they could solve the prohlems of consejousness without having a great deal of data to back up their claims," he says, but "things have moved a long way since then, and people who make statements like this today without having let their ideas go through the normal scientific practice of peer review are gencrally ignored."

But Greenfield plans to get data to back her ideas with the help of OXCSOM. One of its research aims is "to test Susan's theory," says John Stein, an Oxford nenrophysiologist and one of OXCSOM's core group of researchers, although "obviously we won't solve the problem of consciousness in a matter of months." In line with the religious
interests of the Templeton Foundation, which banktolls OXCSOM, its initial focus is on "the physical basis of belicfs."

For example, Oxford neuroscientist Irene Tracey is investigating whether religious beliefs affect pain tolerance. The pain is delivered to volunteers in the form of heat or a chili paste applied to the arm. Subjects who identify themselves as "deeply religious" use rituals to cope, such as praying, whereas nonreligious subjects just grit their teeth. Meanwhile, she uses functional magnetic resonance imaging to observe patterns of brain activity during the ordeal.

Capturing the brain's reaction is the easier part of the experiment, she explains, because it is readily detected. But to determine "how deep" beliefs are or "how much" pain is experienced, she must rely on reports from the subjects themselves. That subjective aspect is both a pro and a con. Although it can make comparisons very difficult without carefully chosen controls, it is also "exactly the aspect that we're trying to figure out," she says. "Pain is an incredibly flexible phenom-

Academics sit and discuss ideas, but "I'd rather see my ideas ... [make] a difference in people's lives."

-Susan Greenfield

enon, dependingon your perceptions, expectations, and degree of self-awareness," all ingredients of consciousness. And on the practical end, determining the mechanisms that might dampen pain for a believer could lead to better therapics for everyone.

Whether grappling with slippery concepts such as belicf will bring us closer to understanding consciousness is an open question. "But even if the project fails in its ultimate aim." says Erik Myin, a philosopher of consciousness at the University of Antwerp, the Netherlands, it could reveal how to convert such "big questions" into ones that can be seientifically validated.

But judging Greenfield on her own research may be missing the point. "She's gutsy and an inspiration" to younger scientists, says King. And among the public, "her ability to communicate that science is fun and creative" and that "you don't have to be a boring fiddyduddy wearing tweed skirts" is vital, says Stein. He says he can measure her impact every year in "the number of girls applying to do medicine or neuroscience who've said they 've been enthused by Susan's lectures or books." Even if she doesn't crack consciousness, he says. (ircenfield has already made an enormous contribution.
-John Bohannon
John Bohannon is a writer in Berlin, Germany.

Ancient DNA Yields Clues to the Puzzle of European Origins

DNA from prehistoric farmers adds fuel to a long-simmering debate over the ancestry of living Europeans; divergent male and female histories may help explain the contradictory data

In 2000, archaeologists uncovered a wellpreserved male skeleton at an early farming site at Halberstadt, northwest of Leipzig, Germany. The skelcton was lying on its left side, jts legs and arms tightly flexed, with three pottery bowls buried with it. The man had belonged to a central European culture ealled the Linearbandkeramik (LBK), characterized
in a migration of people and their genes? Or was the chicf movement one of culture, as Paleolithic hunter-gatherers-whose ancestors arrived on the continent as long as 40,000 years ago-adopted farming'?

Many studies over the past 2 decades have sought to test these hypotheses, often focusing on the DNA of modern Europeans in an

Dead end? This prehistoric farmer from Germany had a DNA variant that is very rare today, suggesting that his farming techniques may have spread much farther than his genes.
by large longhouses and distinctive pottery featuring sweeping striped designs. The LBK people, the first farmers known to occupy central Furope, arose in modern-day llungary and Slovakia about 7500 years ago and within 500 ycars had spread as far west as France and as far east as the Ukraine.

For decades, researchers have stidied the LBK culture for clucs to how farming spread across Europe, an issue that is key to tracing the origins of Europe's now 700 -millionstrong population. The archaeological evidence shows that farming was introduced into Greece and southeast Europe from the Near East more than 8000 years ago, then spread west and north to the Atlantic Ocean. But did the farmers themselves move across Enrope,
attempt to trace their heritage. But the data have been conflicting. Now, a paper on page 1016 of this issue offers the first direct look at the DNA of carly farmers themselves, including a sample from the Halberstadt skeleton. Anthropologist Joachim Burger and graduate student Wolfgang 1 lazk of Johannes Gutenberg University in Mainz, Germany, and their colleagues found that many LBK farmers carry a mitochondrial DNA (mtDNA) type rarely found today, implying that they left little genctic legacy in living Europeans. The new data clash with some earlier studies, inchiding Y chromosome analyses of living Europeans. which suggest that early fammers with roots in the Near East made a deep imprint on the European genome.

Because the Y chromosome is inherited through the male line, and mtDNA is passed down through women, some researchers now think that different genetic destinies of men and women could reconcile the data-and perhaps even the European origins debate. "A simple explanation for the difference is that indigenous hunter-gatherer females intermarried with [earlyl farmers," says Alexander Bentley, an anthropologist at the University of Durham, U.K.

The model of far ming spread by migration, called demic diffusion, was formally proposed in 1984 by archaeologist Albert Ammerman and geneticist Luigi Luca Cavalli-Sforza. It postulates that large numbers of colonizing farmers spread across Europe, mating with some of the hunter-gatherers already there and displacing the rest through rapid local population growth. These growing populations then provided colonizers for still more movements west and north. Many early and some recent studies have supported the idea. For example, a widely cited 2002 paper by geneticist Lounès Chikhi of Paul Sabatier University in Toulouse, France, tracked Y chromosome variation in living Europeans and concluded that indigenous hunter-gatherers contributed less than 50% of the genes of modern Europeans; most genes, Chikhi concluded in the Proceedings of the National Academy of Sciences, came from the colonizing farmers.

But other researchers argued that there was little evidence that early farmers had undergone the kind of explosive population growth required by demic diffusion. Archaeologist Marek Zvelebil of the University of Sheffield, U.K., proposed an alternative model in which some colonization took place in certain areas-perhaps including the LBK region in central Europe-but that farming then spread mostly via local adoption rather than further movements of the original colonizers. A number of recent genetic studics have supported this model. For example, one study concluded that less than 25% of the mtDNA gene pool of moderin Europeans could be traced to incoming early farmers (Science, 10 November 2000 , p. 1080).

To try to get around this stalemate, Burger and llath's team zeroed in on the $m t D N A$ of ancient Europeans. The team tried to extract mtDNA from 57 individuals buried at 16 early farming sites, most from the LBK culture, and dated between 7000 and 7500 years ago. They suceceded with 24 of the skeletons. Moreover; the team found that six of the 24 skeletons had a mtDNA variant, called haplotype Nla , that is now very rare worldwide. Thus an apparently widespread mtDNA variant in carly European farmers has left almost no trace on living

Furopeans, a finding the authors interpret as support for the cultural diffision model.

Indecd, proponents of cultural diffusion hail the results. "It really does seem that [carly farmers] must have left far fewer descendants than one might expect, given the apparent archaeological impact of the LBK at the time," says Martin Richards of the University of Leeds, U.K. Agrees Zvelebil: "This is a very important step forward. ... It bypasses all the problems of extrapolation from modern DNA." But he cautions that to completely prove its case, the team should extract ancient DNA from early farmers in the Near East to see if they also have high frequencies of the N1a haplotype, as well as fiom hunter-gatherer skeletons in the LBK region to see if they have low frequencies.

Those who favor demic diffusion aren't yet convinced, however, "The authors are rather impatient in drawing conclusions," says Cavalli-Sforza, who thinks the results
can't he properly interpreted without knowing the farmers' Y chromosome sequences too. Chikhi adds that the authors have not entirely ruled out the possibility that today's low Nla frequencies are duc to chance loss of the variant. And ancient DNA pioneer Svante Päabo of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Gemany, wains that ancient DNA studies of modern humans are notoriously unreliable because of the problem of contamination with living people's DNA. "In our experience, results from the majority of ancient human samples are irreproducible," he says.

All this leaves rescarchers trying to sort out the conflicting data. Most studies of mtDNA have supported the cultural diffision hypothesis, whereas the Y chromosome data seem to favor a movement of people themselves. The idea that colonizing farmers married local hunter-gatherer women might resolve the conflict between the mtDNA and

Y chromosome data and also explain the team's results, argues Bentley "Intermarriage of farmers with indigenous women would reduce N1a in subsequent generations," he points out, Cavalli-Sforza agrees that intermartiage is a possibility, noting that men may have mated with more than one woman and that the typical LBK longhouse often had three or four hearths. "Polygynic families are a very reasonable explanation" for this architectural arrangement, he says.

For Zvelebil, the contradictory results probably indicate that neither large-scale migrations nor cultural diffusion can explain everything that happened in Europe during the adoption of agriculture. Rather, he suggests, the contribution of each of these processes probably varica from region to region: "Our prehistory was far more complicated and fascinating than either of these models allow for:"
-Michael Balter these models allow for.

Drug Research

Trying to Catch Troublemakers With a Metabolic Profile

Drug discovery and toxicity research are just two areas that could benefit enormously from the use of new "metabonomic" techniques

Only one in I0 potential drug compounds ever makes it to marker; the others are rejected as either too risky or ineffective, Companies have dreamed of making sercening processes more efficient-and now researchers may have a way to do it. They're developing a technique based on "metabonomics," using metabolic profiles to identify toxicities rapidly and analyze the likely effects of unknown compounds. The strategy got a boost last month when several companies that had previously backed researchers at Imperial College Londonincluding Bristol-Myers Squibb (BMS) and Pfizer-signed up to extend the work.

Metabonomics-the study of metabolic changes in urine, serum, or tissue after an organism has been exposed to a drug or other stressor-is decades old in concept. But measurement tools have become more sophisticated, making it possible to analyze data from multiple, small samples and make associations at high speed.
"It is a very powerful technology," says Bruce Carr, director of pharmaceutical candidate optimization at BMS, who has been collaborating with Imperial College researchers. Although studies suggest that companies already catch 90% of adverse effects before a drug application is submitted
to the U.S. Food and Drug Administration (FDA), he believes metabolic profiling might help detect them earlier because it gives a snapshot of an organism's
 t of references based on animals' responses to liver-toxic (blue) and kidney-toxic (red) compounds over time.
resonance (NMR) spectroscopy and other technology to generate metabolic profiles of the animals.

The COMET researchers then used a computer program they had developed to assess which organs were affected. Called Classification of Unknowns by Density Superposition (CLOUDS), the software compared the NMR data-typically a hallmark signature of peaks corresponding to unknown or known metabo-lites-to an existing database of profiles. Tissue samples went to histology researchers for confirmation of the NMR findings. Preliminary results, published in Analytica Chimica Acta in 2003, demonstrated that this method at a separate facility with more than 100 toxic compounds, one per animal. The Imperial College rescarchers scanncd urine and serum samples through nuclear magnetic

Toxic signature. The CLOUDS program creates a

The teamwork began 5 years ago when six pharmaceutical companies including BMS and researchers at Imperial College formed the Consortium for Metabonomic Toxicology (COMET). Their goal was to develop a database of known toxims and their metabolic signatures from animal tests, to which experimental drugs with unknown toxicity could be compared. Rats were dosed

could group samples aceurately by affected organ: for example, liver toxicity with up to 77% accuracy and kidncy toxicity with up to 90% accuracy.

More significant, however, was the program's ability to erunch data taken at intervals in long-term studies. Researchers analyzed urine and serum samples at various times from the moment an animal was dosed with a toxin through its recovery. The program used probability calculations to assign the effects seen in each animal to the most likely toxin class and to identify when the compound caused the toxicity.

The analysis is "much more sophisticated" than any other screening tool now available, says Jeremy Nicholson, head of biological chemistry and COMFT project director at Imperial College, because it can identify more simply biochemical changes that may catre pathology. (Nicholson has helped launch a spinoff in London to commercialize similar technology applied to medical diagnostics, called Mctabometrix.)

Existing toxicology research methods can only examine toxic effects on one tissuc type at a time. A gene-expression study, for example, yields data from a single time point in a single tissuc. Morcover, changes in gene expression may not mean a net biological change. The body's homeostatic mechanisms may compensate by degrading or modifying gene transcripts. By contrast, "wrine and platsmage the metabolic interaction of all tissues," Nicholson adds.
"Metabonomics has a big role to play in toxicology research," says Ian Blair; a professor of chemistry at the University of Pennsylvania. "Once you have a signature of toxicological response, you could use that as an assay for many things."

After the consortium published the initial results, each member developed its own database and technology in-house. Companies have been mum on details but have confirmed that they are building larger databases against which they can compare new compounds. Several companies also employ metabonomics to screen animals prior to an experiment to ensure that they are normal. Researchers say the technology could also be applied to clinical trials to correlate drug response to individual metabolism.

Drug companies aren't the only ones interested in metabolic profiling. In 2003, the U.S. National Institutes of Health awarded $\$ 35$ million to a consortium of 18 institutions to identify, characterize, and quantify human cellular lipid metabolites. And recently Nicholson formed a coalition of scientists to establish standards for the field.

COMET's success has prompted several companies to join COMET II at Imperial College, says Nicholson. He's heading the
project, which is scheduled to launeh this month. The goal this time, however, is to create a "multiomics" platform that combines data from many sources, including gene and protcin arrays, to reveal biochemical mechamisms.

That will be no easy task. Spectial data from a single urine sample contain thousands of peaks, the majority of which are unidentified metabolites. But the analytical tools to assign identities to the peaks are already emerging, says Nicholson. For example, his colleagues at Imperial College have a paper in press at Analyfical Chemisty deseribing software that can combine data from NMR spectroscopy and mass spec-trometry-similar yet complementary metabonomic techniques. And Nicholson says his colleagues have already developed
a prototype system that integrates data from gene, protein, and metabolic profiles.

But whether the technology will actually help make drugs safer remains to be seen, says David Jacobson-Kram, head of phamacology and toxicology at FDA's office of New Dings: "Technology can help to some extent, but perhaps our expectations are unrealistic." One potential application touted by the technology's supporters is to metabolically protile drug side effects. "Is there a metabolic protile characteristic of suicidal ideation?"-a side effect of several antidepressants-bacobsonKlam asks. "That's a stretch."

Nevertheless, the field is young, Blair says, and the number of papers it is producing these days suggests it has begın a growth spurt.
-Gunjan Sinha
Gunjan Sinha is a writer in Berlin, Germany.

Paleontology

Tyrannosaurus rex Gets Sensitive

Its supersized smell organs have been scaled back a bit, but new studies show that the tyrant lizard's sensory apparatus was indeed fit for a king

Mesa, Arizona-With its powerful jaws and serrated teeth, Tyfannosaufus fex had fearsome tools for catching and eating prey. The lumbering carnivore also had some top-of-the-line sensory equipment, paleontologists reported here last month at the 65 th annual mecting of the Society of

You can't hide. Tyrannosaurus rex's keen senses of smell, hearing, and vision helped it take down prey or snap up carrion.

Vertebrate Paleontology (SVP).
The new insights come from studies of bony clues to the brain, ears, and eyes of T. rex. They suggest that the "tyrant lizard king" had an acute sense of smell-although perhaps not as acute as some recent stodies had suggested-a knack for listening as well as keeping its eyes fixed on prey, and depth perception to rival modern birds of prey. To most paleontologists, it all adds up to a talented predator. "The more we look at T. rex, the more sophisticated it is," says Philip Currie of the University of Alberta in Edmonton, Canada.
T. rex was first unveiled and named 100 years ago by the legendary paleontologist Henry Fairfield Osborn of the American Museum of Natural History in New York City. Ever since, T. rex has been famous for its staggering dimensions-ranging up to 12 meters and perhaps as much as 7 tons-and its highly modified skeleton. Several of those distinctive features, such as the shrimpy arms and the bone-crushing teeth, led some researchers to propose that T. rex was prima-
rily a scavenger. That case was bolstered in 1999, when computed tomography (CT) scans revealed that the T. rex named Sue had enormous olfactory bulbs (Science, 9 June 2000 , p. 1728) - a specialization that would presumably have helped it catch the scent of a dead dinosarry in the distance.

To some palcontologists, the gargantuan olfactory bulbs were difficult to swallow. One group of researchers-François Therrien of the Royal Tyrrell Museum of Palaeontology in Drumheller, Canada, and Farheen Ali and David Weishampel of the Johns Hopkins University School of Medicine in Baltimore, Maryland-decided to see what the olfactory bulbs in Tyrannosaurus's closest living relatives, birds and crocodiles, could reveal about their long-gone cousin.

In both groups, the olfactory bulbs rest against a trough on the upper part of the braincase and are bounded toward the front of the head by a septum. By locating bony traces of this septum in T. rex braincases, Therrien and colleagues could more accurately estimate the position of the olfactory bulbs. "This would have limited their size to no more than that of a plum," Therrien says. Paleontologists had thought the olfactory lobes extended further forward inside the head. "I think they're probably right," says Christopher Brochu of the University of Iowa in Iowa City, who had studied Sue while at the Field Museum in Chicago.

Still, T. rex did very well by its nose. The relative size of the bulbs-their width compared with the width of the cerebral hemispheres-was the highest of seven dinosaurs examined, ineluding other tyrannosaurids and smaller, more birdlike dinosaurs.

Therrien speculates that the acute sense of smell could have been used to track prey, locate putrefying carcasses, or help males patrol territory for rivals. Greg Erickson of Florida State University in Tallahassee cautions that it's not straightforward to link organ size to sensory acuity, as sense of smell is also determined by features such as the density of netrons. "We need more [comparative] studies ... so we can make sense of this," he says.

In the meantime, another study described at the meeting matched Therrien's results on the size of the olfactory bulbs. Lawrence Witmer and Ryan Ridgely of Ohio University College of Osteopathic Medicine in Athens put several T. rex skulls into a CT scanner. By examining features preserved in the skull, including fossilized evidence of nasal tissue

in front of the olfactory hulls, Witmer found that the boulbs were toughly walnut-sized.

Witmer's study extracted clues to other sensory abilities. For example, he resolved the bones that surrounded the so-called cochlear duct of the inner car, which helps turn sounds into nerve signals. The length of these bones, relative to the overall dimensions of the skull,

sugges

T. rex, tilting the head downward can help them better see what's directly ahead.

Kent Stevens of the University of ()regon, Eugene, has come to a similat conclusion about T. rex's vision, which again places it at the top of its class. Ife reconstructed the visual abilities of T. rex and six other predatory dinosaurs by working with sculpted reconstructions of their heads. After placing a sheet of glass in front of the busts, he stood eye to eye with the dinosaurs and shined a
laser at each fake pupil. This allowed him to map onto the glass the entire area from which the laser glinted off the pupils, tracing their visual field.

Acute. CT scans of T. rex's brain (blue) reveal sizable olfactory bulbs (red arrow) and an inner ear (red) with long, delicate canals for balance and cochlear duct for hearing.

T. rex, with its forward-facing and widely separated eye sockets, turned out to have great binocular vision and, likely, depth perception. When T. rex
T. rex may have had better hearing than other theropods did.

The inner ear can also reveal aspects of an extinct animal's posture and sense of halance (Science, 31 October 2003, p. 770). Thanks to the CT scans, Witmer could resolve the bony labyrinth of the inner ear with its trio of semicircular canals, oriented at right angles to one another. Thesc once contained fine hairs that sensed the motion of fluid, helping the brain know how the hody was oriented and which way it was moving. In modern creatures, the larger the loop of the semicircular canals, relative to head size, the more agile they tend to be.
T. fex tumed out to have surprisingly long canals. "You might not expect a large anmal to have quick movements," Witmer says. He suspects that the primary purpose of the canals was not gymmastics bot helping T. rex keep its hoad and eycs fixed on prey. That's not all the canals reveal. In modern animals, the orientation of the lateral canal relative to the skull correlates with how they tend to hold their heads while alert. T. rex apparently kept its head dipped down about 5° to 10°. For tall animals with long snouts, such as
dipped its head about 10°-similar to the angle of the alert posture that Witmer estimated-it would have maximized the width of its binocular field of view at 55°, as good as that of hawks, Stevens says. That's not quite as good as those of the highly birdlike dinosaurs, such as Troondon, but it exceeds that of other adult tyrammosaurids. The rescarch, which Stevens presented at an SVP meeting sevcral years ago, is in press at the Journal of Vertehrate Fateontology.
To Stevens, the degree of depth perception, hearing, and sense of smell point in one direction: a top predator. In contrast, Jack Iforner of the Muscum of the Rockics in Bozeman, Montana is sticking with his idea of where T. rex got its meals. "I think this olfactory business is very supportive of the T. rex-as-scavenger hypothesis." Others say it's more likely that T. rex wasn't a picky eater, "If it can smell a carcass a mile away, it can also smell a herd of hadrosaurs fiom a mile away," says James Ilepson of the University of Chicago in Illinois. "I don"t think it would have preferred one over the other."
-Erik Stokstad

Random

The State of Africa's Lakes

The U.N. Environment Programme has assembled a dismaying picture of the degradation of Africa's 677 lakes. Last week, it introduced a new Atlas of African takes at the World take Conference in Nairobi, Kenya. Above, satellite images show Lake Songor Lagoon in Ghana, which has lost volume and biodiversity between 1990 (left) and 2000 (right) due in part to salt mining.

Hellenistic Engineering

Last month in Athens, scientists unveiled a working model of a mysterious instrument discovered a century ago in the ruins of a 2000-year-old Greek shipwreck.

Found as a crusted bronze mass in the cargo of a ship that sank off the island of Antikythera, the instrument, dubbed the "Antikythera Mechanism," was a jumble of gears and dials encased in a wooden box.
Yale University science historian Derek de Solla Price puzzled for many years over the instrument. After x-raying it, he concluded in 1974 that it was designed to compute solar and lunar cycles. He described some 30 bronze gears that required a differential turntable to coordinate them-which would have been a revolutionary technology for the time.

In 1989, engineer Michael Wright, now at Imperial College London, and Sydney University computer scientistAllan Bromley applied more advanced imaging technology to determine the level of each wheel and

Mystery planetarium reconstructed.
gear within the mass. They showed that Price's inclusion of a differential gear was incorrect. Bromley's death interrupted the work, but in 2002, Wright started again on a reconstruction. His complete working model, unveiled at the Second Conference on Ancient Greek Technology in Athens, demonstrates that the mechanism included a complete planetarium, showing the orbits, or epicycles as the Greeks called them, of not only the sun and moon but also the five planets known to the Greeks: Venus, Mars, Jupiter, Saturn, and Mercury. The instrument shows that intricate geared mechanisms were "an accepted element of Hellenistic technology." says Wright.

Latest in Translation

Grad student Stan Jou was mouthing Mandarin Chinese, but no sounds issued from his mouth. Instead, a robotic voice from a speaker spoke for him, using inputs from electrodes glued to his cheeks and throat. The words, in English or Spanish, were part of a press conference last week at which computer scientist AlexWaibel of Carnegie Mellon University in Pittsburgh, Pennsylvania, and others showed off their latest toys for speech recognition and translation.

The electrodes on Jou's face picked up movements of his face and throat muscles. Software turned them into words, which were then translated. So far, the system can only recognize about 15 phrases. But Waibel predicts that someday people will be able to have face-to-face conversations in
 alien tongues without the sounds of their original words getting in the way.

The researchers are also developing goggles displaying simultaneous translations of a talk. And they've built directed speakers that can pinpoint a person in a crowd and deliver a translation as if it were being whispered in the ear. Waibel's software for translating spoken language is some of the best in the world, says Satoshi Nakamura of the Advanced Telecommunications Research Institute in Japan, but he doubts such a program will make it to the marketplace in this decade.

Some of this technology could require more-or-less permanent attachments to the listener. But, says Waibel,"I think someday people will accept having a few electrodes implanted in their cheek."

Who's No. 1?

Britain's Royal Society launched two polls this week-an online one for the public and one for scientists-on whether Einstein or Newton is "the greatest scientific heavyweight of all time." Results will be announced at an "Einstein vs. Newton debate" in London on 23 November.

According to Royal Society vice president Martin Taylor, the society is hoping the contest will inspire British students, whose interest in physics has "reached a historical low." Vote at www.royalsoc.ac.uk.

A LIFE IN SCIENCE

Total immersion. Nanotech pioneer Richard Smalley, who died 28 October, did not view any task as beneath him, says chemist Jim Heath of the California Institute of Technology in Pasadena. "Even when he was famous, he would sweep the floors if he thought it would help to get the science done. Once, somebody dropped a screwdriver into a huge vacuum chamber-the same one that was used for the discovery of C_{60}. The screwdriver handle dissolved in the oil [at the bottom of the chamber], so the chamber had to be cleaned out. [It]
was about 10 feet $[3 \mathrm{~m}]$ high and could only be accessed through a hole in the top. Rick and I had to strip down to our underwear and take tums holding each other by the ankles and lowering the other into the chamber to clean it out."

MISCONDUCT

Pressure to publish. A former postdoc who falsified images in a paper has been banned from receiving U.S. research funding for 3 years. The Department of Health and Human Services' Office of Research Integrity in September found Xiaowu Li guilty of scientific misconduct for passing off images of mouse
melanoma cells as human pancreatic cancer cells in a paper published online March 2004 in Carcinogenesis.

Li was working under cancer researcher Daniel Ramos at the University of California, San Francisco. Ramos says he was unaware of the publication, which Li wrote with a group of researchers in China, and was initially upset that he hadn't been asked to be a co-author. But once he recognized the false images, which were taken from his own lab, he contacted university officials. By then, Li had left the university to work at China's Southwestern Hospital in Chongqing, where some of his co-authors are based.

AWARDS

Inspiring tales. In the quest to explore Earth and other planets, firing imaginations may be as important as firing rockets. That's why the Planetary Society is honoring two nonscientists at its 25 th anniversary celebration this week: writer Ray Bradbury, who has transported readers to the planets in The Martian Chronicles and other works, and filmmaker James Cameron, who directed the blockbuster Titanic and has taken viewers for otherworldly tours of the ocean floors in his documentaries Chosts of the Abyss and Aliens of the Deep.

The 85 -year-old Bradbury will receive the Thomas O. Paine Memorial Award for the Advancement of Human Exploration of Mars. Previous winners include members of the Mars Pathfinder and Mars Global Surveyor missions. "There was a lot of intelligent imagination in what he wrote," says Wesley Huntress, president of the society and director of the Geophysical Laboratory of the Carnegie Institution of Washington, D.C., who credits Bradbury's writings for inspiring him to become a space scientist. Cameron, 51 , will receive the society's inaugural Cosmos Award for Outstanding Public Presentation of Science.

Ramos says the results of other experiments he performed with Li appear to be valid. He says Li told him during the investigation that the pressure to compile an impressive research record drove him to commit misconduct. (Science was unable to contact Li.) "It kills me," Ramos says. "He was good-he didn't need to do something like this."

NONPROFIT WORLD

Fueling science. John Browne, an oil magnate with an interest in research, will be the next president of the British Association for the Advancement of Science.

Now group chief executive of British Petroleum, Browne oversaw the merger of BP and Amoco in 1998 and has drawn attention to climate-change risks. Last year, he wrote that "global warming is real and ... we should start taking the small steps to reduce carbon dioxide emissions today." (BP says it cut greenhouse gas emissions by 10% between 1998 and 2001.) Browne, 57 , who has an undergraduate degree in physics and a master's degree in business, will take the helm of the 174 -yearold association next September, succeeding Frances Cairncross.

Got any tips for this page? E-mail people@aaas.org

Strut into Science

Put your face on the cover of Science in a free, online game on EurekAlert!'s
Science for Kids site.

To play, visit:
www.EurekAlert.org/beonthecover

Science
\triangle AAAS

Artifact Zapper

Riverbend Instruments, Inc.

The Artifact Zapper, developed in cooperation with Dr. James Gnadt, adaptively removes stimulation artifacts from neural recordings in real time without removing neural
Before responses.

"The Zapper easily and instantly erases much or all of the stimulus artifact, that is otherwise such a nuisance. It is simple to use and easily permits different strengths of zapping depending on the
After
 needs of a particular experiment. I have one in every lab." -Dr. Mare Sommer,Center for Neural Basis of Cognition, Univ. Pittsburg

Cancel the artifact, save the spikes.
Price: $\$ 2,987$ (Includes shipping within the USA)

www.riverbendinst.com info@riverbendinst.com Phone: (205) 320-1722

LETTERS

subject to significant bias. Authors who identify appropriate reviewers are more likely to be well established in their fields than authors who do not, reflecting not only on the quality of their research but also on their ability to gatuge whether a particular manuseript is of sufficient standard for a given journal. Furthemore, it is unsurprising that authors who exclude specific reviewers are more likely to be successful, particularly if the reason for exclusion is that the potential reviewer is a perceived competitor, suggesting that the manuscript in question deseribes relevant and highly publishable research. I hawe no doubt that personal prejudice has occasionally superseded scientific judgment in the peer-review process. However, like David Nordstrom, I prefer to believe that quality of researeh is the prevailing factor' in the vast majority of cases. As for my own rejected manuseripts?' In the words of Franklin P. Jones: "I lonest criticism is hard to take, particularly from a relative, a friend, an acquaintance, or a stranger."

DAVID F.ACKERLEY
Department of Microbiology and Immunology. Stanford University, 299 Campus Drive, Stanford, CA 94305-5124, USA.

IN HIS ARTICLE "SUGGESTING OR EXCLUDING reviewers can help get your paper published" (News of the Week, 23 Sept., p. 1974), D. Grimm examines a potential problem with peer review in science. When anthors submit papers and recommend that particular scientists either referec or be exeluded from the pool of referees for their paper, their paper is (j) more likely to be aceepted and (ii) less likely to be rejected.

Nevertheless, there may be a bias in the sample of papers with suggestions of referees. Such authors may generally be better rescarchers, suggesting that their papers both get published and cited at a higher rate than other sejentists. This hypothesis could easily be tested by comparing the rates of citations to papers that were refereed by scientists suggested by the authors with the rates of citations to papers that were refereed by scientists chosen by the editor and editorial board alone. If the first set of papers end up being cited more frequently than the

Letters to the Editor

Letters (-300 words) discuss material published in Science in the previous 6 manths or issues of general interest. They can be submitted through the Web (www.submitZscience.org) or by regular mail (1200 New York Ave., NW, Washington, DC 20005, USA). Letters are not acknowledged upon receipt, nor are authors generally consulted before publication. Whether published in full or in part, letters are subject to editing for clarity and space.
second, then the first set are probably more important and thus deserve to be accepted for publication at a higher rate, If so, the peer-review process is working as it should But, if we find that the latter set of papers are cited more frequently than the fommer, then the practice of allowing anthors to recommend referees should be discontinued.
K. Brad Wray

Department of Philosophy, State University of New York, Oswego, 128 Piez Hall, Oswego, NY 13126, USA. E-mail: kwray@oswego.edu

Correcting Temperature Data Sets

We agree with C.A.Mears and F. J.Wentz
("The effect of diuinal correction on satel-lite-derived lower tropospherie temperaturc," Reports, 2 Sept,, p. 1548; published online 11 Aug.) that our University of Alabama in Iluntsville (UAII) method of calculating a dinnal correction to our lower tropospheric (LT) temperature data (v5.l) introduced a spurious component. We are gratefinl that they spotted the error and have made the neeessary adjustments. The new UAH LT trend (v5.2, December 1978 to July 2005) is $10.123 \mathrm{~K} /$ decade, or 0.035 $\mathrm{K} /$ decade warmer than v 5.1 . This adjustment is within our previously published crror margin of _ $0.05 \mathrm{~K} /$ decade (1).

We agree with S. C. Sherwood et al. ("Radiosonde daytime biases and late-20th century warming," Reports, 2 Sept., p. 1556 ; published online 11 Aug.) that there are significant, progressively colder biases in stratospheric radiosonde data, as we and othcrs have noted $(l, 2)$. We further agree that many daytime radiosondes are plagued by spurious cooling in the troposphere as well (3). Ilowever, there are also instances in which spurious warming occurs in both day and night soundings. Such a cireumstance is not properly accommodated by the day-minus-night (DMN) procedure, a possibility mentioned by Sherwood et al. but not specifically addressed. For example, when the Australian/New Zealand network, prominent in the Southein Hemisphere in Sherwood et al. 's Report, switched instrumentation from Mark III to Vaisala RS-80, both day and night warmed approximately $0.4 \mathrm{~K}[(3)$, updated], with tropospheric night readings warming more than day readings. On the basis of this relative difference, the DMN method assumes that a correction for spurious cooling should be applied, when in fact the real crror is large and of the opposite sign.

DMN values are useful indicators for pointing out radiosonde changes, but they are often not usefil in assessing magnitudes and in this case overestimate the trend. Further, the DMN-adjusted tropospheric trend for

1958-97 of 10.253 K decade for the 75% of the globe south of $30^{\circ} \mathrm{N}$ is more than 2.5 times that of the surface ($0,092 \mathrm{~K} /$ deeade) and thus very likely to be spuriously warm. [Note that B. D. Santer ef al. ("Amplification of surface temperature trends and variability in the tropical atmosphere," Reports, 2 Sept., p. 1551 ; published online II Aug.) indicate a ratio less than I.4.J Direct, sitc-by-site comparisons between radiosondes and UAH LT data at 26 U.S.centrolled stations (nighttime only) from tropics to polar latitudes yield a difference in trends of 1 css than 0.03 $\mathrm{K} /$ decade, showing consistency with the more modest UAH LT trends (1) [(3), updated through 2004]

JOhn R. CHRISTY* and Roy W. Spencer
Earth System Science Center, University of Alabama in Huntsville, Cramer Hall, 320 Sparkman Drive, Huntrville, AL 35899, USA
*To whom correspondence should be addressed.
E-mail: Christy@nsstc.uah.edu

References

1. J. R. Christy et al. f. Atmos. Oceanic. Technot. 20,613 (2003)
2. D. E. Parker et af., Geophys. Res. Lett. 14, 1499 (1997). 3. J. R. Christy, W. B. Norris, Geophys. Res. Lett. 31, L06211 (2004).

Response

ONCE WE REALIZED THAT THE DIURNAL CORrection being used by Christy and Spencer for the lower troposphere had the opposite sign from their correction for the middle troposphere sign, we knew that something was amiss. Clearly, the lower troposphere does not warm at night and cool in the middle of the day, We question why Christy and Spencer adopted an obwiously wrong din1nal correction in the first place. They first implemented it in 1998 in response to Wentr and Schabel (1), which found a previous error in their methodology: neglecting the effects of orbit decay.

Carla. Mears and Frank J. Wentz Remote Sensing Systems, 438 First Street, Suite 200, Santa Rosa, CA 94501, USA.

Reference

I. F. J.Wentz, M. Schabel, Nature 394, 661 (1998)

Response

We are happy that Christy and Spencer do not dispute our main conclusion, that changes in systematic error in the radiosonde record are comparable to expected trends. I However, their characterization of our work as a "DMN method" downplays the key fact that we have identified and quantified a source of crror. One need not assume that nighttime readings are absohtely con'ect to recognize that because they do not contain this error, they are less likely to differ from the truth than are daytime data. Any remaining errors affecting both times of day are much more difficult to quantify, and estimates of their magnitude will be sensitive to the assumptions and proce-
dures followed. We welcome Christy and Spencer's efforts to estimate these additional errors and look forward to seeing details published as to how they arrived at the numbers quoted and what they found at other stations.

There is growing evidence, however, that the net result of all adjustments will indeed lead to increased warming, contrary to their assertion. First, all published homogenization efforts have led to increased warming ($1-3$); although weaker than what we found, this is probably because previous efforts went only after the "biggest fish" and/or suffered from other difficulties. Second, a new and independent study (4) strongly suggests that the spurious cooling trends in the stratosphere extend into the troposphere, in accord with our findings and as suggested previously (1). The implication by Christy and Spencer that spurious warmings (which have been documented in the other studies as well) somehow compensate for daytime heating effects in the troposphere, but not in the stratosphere, will require clear support from the data and careful scrutiny of methods. The agreement noted by Christy and Spencer at U.S. stations is encouraging but does not guarantee agreement in the Tropics [and mustn't this previously reported agreement have been affected by the recent revision to their method (5)?].

The trend noted by Christy and Spencer south of $30^{\circ} \mathrm{N}$ is a misleading statistic that mixes up two parts of the globe whose situation is very different. In the Tropics, sampling is adequate and we find a large error that brings the data closer to what is expected. South of $30^{\circ} \mathrm{S}$, on the other hand, sampling is far from adequate, and radiosonde trends have always been erratic, with or without the relatively modest correction implied by our work.

Quite apart from this, it is hard to believe that Christy and Spencer would argue that a data set showing the "wrong" amount of warming must therefore be flawed. If that were a valid argument, their own satellite analysis would have been discarded years ago.
STEVEN C. SHERWOOD ${ }^{1}$ AND JOHN R. LANZANTE ${ }^{2}$
${ }^{1}$ Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA. ${ }^{2}$ National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, NJ 08542, USA.

References

1. J. R.Lanzante, S. A. Klein, D.J. Seidel, /. Clim. 16, 241 (2003). 2 P.W. Thorne et al., J. Geophys. Res. 110, Art. no. D18105/2005.
2. L. Haimberger, "Homogenization of radiosonde temperature time series using ERA4 analysis feedback information" (ERA40 Project Report Series \#23, European Centre for Medium Range Weather Forecasting, Reading, UK, 2005).
3. X. Randel, X, W, \mathcal{W}. Clim, in press
4. C.A. Mears, F. J.Wentz, Science 309, 1548 (2005); published online 11 Aug. 2005; 10.1126/science. 1114772.

Causation, Vioxx, and Legal Issues

IN THE ARTICLE ON THE FIRST VIOXX TRIAL,
"Vioxx verdict: too little or too much science?" (News Focus, 2 Sept., p. 1481), A. Lawler writes that one commentator attributed the jury's verdict for the plaintiff to the evidence about Merck covering up the problems with its drug. This occurred in a case that most observers thought was one of the weakest ones on individual causation.

In law (as in science), causation is a matter independent of culpability. A drug may innocently cause harm, and the most heinous corporate actions may, through serendipity, not result in harm. Yet the Vioxx verdict appears to be a reprise of what occurred with the drug Bendectin and silicon gel breast implants, in which juries relied on evidence of corporate wrongdoing to reach verdicts that the evidence of causation would not justify $(1,2)$.

Remarkably, the success of plaintiffs with juries continued in the Bendectin litigation even after the science tending to exonerate the drug became more robust (3).

For the most part, courts corrected those errors in Bendectin (which spawned the famous Daubert decision, requiring federal judges to more aggressively screen expert testimony) and in breast-implant litigation. Merck may not benefit from the same judicial intervention. There is, after all, pretty good evidence that Vioxx has caused a substantial number of heart attacks, and those plaintiffs are queuing up for their turn. The first case appears to have ridden on their anticipated coattails.

Michael D. Green
Wake Forest University, Winston-Salem, NC 27106, USA.

References

1. R. Nagareda, Mich. Law Rev. 96, 1121 (1998)
2. M. D. Green, Bendectin and Birth Defects (Univ, of Pennsylvania Press, Philadelphia, PA, 1994).
3. J. Sanders, Stanford Law Rev. 46, 1 (1993).

Illusory Statistics

The Report by S. Nee etal. "The illusion of invariant quantities in life histories" (19 Aug., p. 1236) demonstrates that empirical support for the presence of invariant ratios in life-history traits is based on spurious correlations. Unfortunately, their example is just one of many: Spurious correlations have been repeatedly raised as statistical proofs for concepts as varied as the energetic costs of reproduction (1), rates of morphological evolution (2), and estimates of forest biomass (3).

The repeated and blind application of diseredited statistics is a stumbling block to

THE MOUSE OF TRUTH

The most accurate genetic
mouse background testing
service used in association
with speed congenics and quality controlquality
assurance - not to mention the
fastest and most cost effective.

Six (of 96) markers in pairwise
comparison for strains B6 and 129

Try GenoMouse, Risk Free.

For more information visit:
http://www.mouseoftruth.com

International +41 417472550
USA 1-877-GENOMOUSE

What can Science STKE give me?

The definitive resource on cellular regulation

STKE - Signal Transduction

 Knowledge Environment offers:- A weekly electronic journal
- Information management tools
- A lab manual to help you organize your research
- An interactive database of signaling pathways

STKE gives you essential tools to power your understanding of cell signaling. It is also a vibrant virtual community, where researchers from around the world come together to exchange information and ideas. For more information go to www.stke.org
To sign up today, visit promo.aaas.org/ stkeas
Sitewide access is available for institutions. To find out more e-mail stkelicense@aaas.org

LETTERS

the advancement of science. The mere possibility that a statistical artefact could form the empirical base from which a ficld of evolutionary biology has grown is a sign that something is wrong It is symptomatic of a larger issue in the biological sciences: To be a good biologist, you must also be a competent statistician, but many are not. To quote one viewpoint recently expressed, "If you can't understand enough statistics to interpret the data from your own experiments, then you probably don't deserve a Ph.D. in ecology" [(4), p. 49].

Spurious correlations in biological data are a commonly described phenomenonPearson first proved their existence to evolutionary biologists more than a century ago (5). One hundred and eight years on, Nee et al. have shown that this simple statistical message is finally sinking in.

Robert M. Ewers
Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK, and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK. E-mail: robert.ewers@ioz.ac.uk

References

1. S. G. Gebhardt-Henrich, f. Avian Biof. 31, 245 (2000).
2. P. D. Roopnarine, Annu. Rev. Evol. Syst. 34, 605 (2003).
3. T. J. Dean, Q.V. Cao, For Sci. 49, 279 (2003).
4. C. K. Geedey, J. L. Dudycha, Front. Ecol. Environ. 2, 49 (2004).
5. K. Pearson, Proc. R. Soc. London 60, 489 (1897).

CORRECTIONS AND CLARIFICATIONS

News Focus: "A glass ceiling for Asian scientists?" by J. Mervis (28 Oct., p. 606). The article incorrectly implied that an invitation to Liqun Luo to join the program committee of the Society for Neuroscience came in response to a letter questioning the society's commitment to providing opportunities for Asian-American scientists. The appointment occurred before the letter was submitted, as part of the society's normal process of replacing committee members. In addition, the article misspelled the first name of Irwin Levitan, who chairs the society's committee on committees.

AAAS News and Notes: "2006 Annual Meeting: Grand Challenges, Great Opportunities" (28 Oct., p. 635). Two lines were missing from the the last paragraph in column 1 on page 635. The missing text is "Altogether, there will be more than 200 symposia, lectures, seminars, and other sessions. For more about the program and registration, see www.aaasmeeting.org." The text is correct in the online version.

News of the Week: "Six women amang 13 NIH 'Pioneers' " (30 Sept., p. 2149). The first name of Pehr Harbury, chosen for the 2005 Director's Pioneer Award by the National Institutes of Health, was misspelled in the picture caption that accompanied the story.

Policy Forum: "Pathogen surveillance in animals" by T. Kuiken et at. (9 Sept., p. 1680). In reference (16). part E of the figure was incorrectly attributed to the Australian Broadcasting Corporation; the photograph is from Reuters.

A Vaccine Disaster and Its Fateful Shadow

Olen Kew

F- ive decades ago in Ann Arbor, Michigan, Thomas Francis made a momentous announcement: the polio vaccine developed by Jonas Salk and his team worked. The news was hailed as one of the greatest triumphs of science, medicine, and public health. Development of a safe and effective polio vaccinc, through the leadership of the National Foundation for Infantile Paralysis and its March of Dimes campaigns, reaffirmed the spirit of voluntecrism in the United States and restored public confidence in vaccines following two decades of disaster. Church bells rang throughout the land in celchration, and Jonas Salk enjoyed celchrity unprecedented for a medical scientist. As Paul Offit vividly describes in The Cutter Incident: How Americas First Polio Vaccine Led to the Gmowing Vaccine Crisis, the announcement came at a time of devastating polio epidemics that paralyzed tens of thousands of children each year, a time when Americans' fear of polio was surpassed only by their fear of nuelear war. The new vaceine was promptly licensed, and communities were mobilized to deliver millions of doses to children throughout the country.

Within three weeks, triumph turned to tragedy as reports streamed in of polio cases among recently immonized infants and children, paincipally from the western states. The clinical and epidemiologic findings elearly implicated the polio vaccine and nariowed the risk to specific lots produced by Cutter Laboratories of Berkeley, California, one of the five American producers of the vaccine. In his gripping narrative, offit (an immunologist and pediatrician at the Children's Ilospital of Philadelphia and the University of Pennsylvania School of Medicine) z recounts the tertible dilemma faced by public health officials as they urgently sought a way to prevent finther cases while not undemining public confidence in the polio vaceine just as the peak transmission season for circulating polioviruses was beginning. Because the regulations governing vaccine

The reviewer is in the Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE,Atlanta, GA 30333, USA. E-mail: omk $1 @ c d c$ gov
production were at the time quite limited, the officials had essentially no knowledge of the problems that Cutter and othermanufacturers had encountered in producing polio vaceine lots free of infectious virus. Crucjal decisions were made on the basis of very limited information. A consequential backdrop to these events was widespread skepticism about Salk's polio vaccine among leaders in the scientific communityskepticism fueled by a mixture of intense personal rivalry and the view that the attenuated polio vaccine then under development offered a more technically elegant, and potentially more broadly applicable, solution. In the wake of the Cutter tragedy, some leading scientists even asserted theat Salk's theories and methods were fundamentally flawed and that production of an inactivated polio vaceine free of infectious virus was theoretically impossible.

Ready for the rollout. Drawing on stockpiles of bottles (such as these photographed in New Jersey in January 1955), the five manufacturers distributed more than 4.8 million doses of polio vaccine in the first three weeks after the April 1955 licensing of the vaccine.

Subsequent events have vindicated the Salk vaccine, because many millions of doses were produced and administered after 1955 without incident. The availability of an effective polio vaccine in 1955 saved tens of thousands of children in the United States, Canada, and Europe from lifelong paralysis and demonstrated the feasibility of widespread immonization to control polio. Inmmurization with the live, attenuated oral polio vaccine of Sabin, licensed in 1961, completed the task already well advaneed by use of Salk's vaccine, and the last pockets of indigenous poliovints transmission were eliminated in the United States by the 1970 s . Building upon the successfil elimination of polio from developed countrics, the World I Fealth ()rganization established the Global Polio Eradication Initiative in 1988 to fulfill the promise of a polio-frec world first envisioned in 1955 . In this global effort, the more easily administered Sabin vaccine has been the primary wapon against polio, but many countries, including the United States, have returned to the Salk vaceine to maintain a polio-free status.

Offit's book is a comprehensive and readily comprehensible account that seamlessly moves from historical narmative through technieal exposition, mystery thriller, courtroom drama, and legal review to social commentary. In this last aspect, Offit presconts his most compelling messuge: that the Cutter incident lies at the root of our current vaceine crisis. Ife recounts how thoughtfil jurors, following a judge's strict instrictions, reluctantly found Cutter liable for financial damages even though they believed that Cutter was not negligent in the production of polio vaccine. He then traces how the principle of liability without negligence wat aggressively expanded in subsequent court decisions to liability even for the manufacture of safe products. Echoes of the Cutter decision still reverberate today in the diminishing number of vaceine manufacturers, the high prices for vaccines in the United States and other developed countries, and the insufficient current supply of influenza vaceine as we face a possible pandemic.

The Cutfer Incident offers a concise and thoroughly documented account (well illustrated with rare period photos) of a medical tragedy and its contimuing consequences. Offit presents a powerful case for a far more enlightened approach to the development and use of lifesaving vaccines.
10.1126/science. 1119502

PHYSICS

A Comical Look at Real Physics

Sam Kean

James Kakalios is a physicist who knows how to shrink the separation between physies and play. While his researeh is directed toward understanding the properties of amorphous semiconducters, he also investigates problems that can be grasped at a glance. We has studied the "Brazil nut prob-lem"-why the large, heavy nuts seem to defy gravity and rise to the top when you shake a can of mixed nuts. And he has piled up sand to see how steep the slopes can get before the grains start to spill down the sides. Thus, it comes as no surprise that in The Physics of Superheroes Kakalios offers a droll but sincere look at what Superman and Spider-Man can teach about physics. Granting the one-time "miracle exceptions" that give superheroes their powers in the first place, it turns out they can teach quite a lot.

In the introduction, Kakalios describes his motivation for writing the book. He reports overhearing a conversation between two students after a physics exam that had evidently not gone well for them. One complained to the other (in the author's cleaned-up version), "I'm going to bleeping buy low, and bleeping sell high. I don't need to know about no bleeping balls thrown off no bleeping cliffs." Kakalios notes two things we can learn from this complaint: "the secret to financial success" and "that the examples used in traditional physics classes strike many students as divorced from their everyday concerns."

Surprisingly, when Kakalios introduced superhero-related homework, his students at the University of Minnesota stopped complaining. He found that problems about Magneto and the Flash never struck them as unrealistic, and comic books proved an excellent way to teach the topic. A lifelong comic-book junkie, Kakalios developed a fieshman seminar he titled "Everything I Know Ahout Science I Leamed from Reading Comic Books." The Phosics of Siperherves builds on that popular course. (Disclosure: I studied physics at Minnesota and had a passing acquaintance with the author.)

The book follows the familiar path of introductory college physics classes: it starts with Newtonian mechanies, moves to the

The reviewer was a ZOOS AAAS Mass Media Science and Engineering Fellow. E-mail: samkean@gmail.com
conservation laws of energy and thermodynamics, veers into electricity and magnetism, and ends with the modem physics of relativity and quantum mechanies. But the examples for each topic spring directly from the comics, and the book reproduces dozens of panels that depict various seenes. For instance, we spot the Man of Steel lcaping over a building in a single bound, which prompts Kakalios to ask, "With what speed did Superman have to jump?'" Ant-Man-a superhero who shrinks to miniscule sizes-appears in a series of chapters and raises a host of interesting questions. Would Ant-Man be able to speak or hear, given that his vecal cords and cardrums have shrunk, too? Is the scene where he

Perilous to the tiny. In Tales to Astonish \#48, Ant-Man is helpless in a partially filled bathtub.
punches his way out of a vacuum bag realistic, given that his tiny arms are much less powerful levers than a full-sized human's?

Three extra sections follow the main text. The first offers a list of cases where comic books clearly got their physics wrong-for instance, according to Nowtonian action and reaction, the power beams from C'yolops's glasses should snap his head violently backward but they never do. The second presents a fairly typical paean about the joy and clegant power of science to stidy the world. In the third, "Ask Dr. K," Kakalios provides the final word on such questions as whether Wolverine's claws can

The Physics of Superheroes by james Kakalios

Gotham. New York. 2005. 384 pp. \$26, C\$36. ISBN 1-592-40146-5.
shred Captain America's shield and who is the most physically realistic superhero (an easy one).

In addition to discussing the physics, Kakalios often digresses into the history of comic books, where he differentiates between the golden age (1940s) and the silver age (late 1950 s and 1960 s). II a also outlines some famous comic-book debates. For instance, when the (ireen Goblin pushed Gwen Stacy off a bridge, what actually killed her'? The fall or Spider-Man's attempt to stop his girlfriend's descent too quickly? (Kakalios blames Spider-Man.) As someone who has never read a comic book in his life, I found these asides a diverting respite from the science.

Kakalios infuses the book with humor. He has let in some real groaners, but nothing worse than can be expected from the worlds of science fiction and comic books. More troubling are his lapses into dense and unfriendly prose. Unfortunately, more than a few passages read like the following:

In this situation a force will be applied to the charges in the moving wire that will induce them to flow. By dragging the wire through the external magnetic field, we convert the physical energy involved in moving the wire into a form of electrical energy manifested by the electrical current.

This reminded me of classical Greek texts on geometry or physics, which contain statements like, "As is the ratio of the whole to twice the whole, so is the ratio of that double to four times the whole." If you already know what the passage is talking about- $1 / 2=2 / 4$-then the wording seems quite clear. But if the material is unfamiliar, the text is obscure. Similarly, those with a technical background can skim Kakalios's dense passages as a refresher, but neophytes may be left with a headache. Kakalios intended the book for general readers. He should be commended for avoiding too many cquations; nonetheless, there are still a few dizzying pages.

The trouble spots, however, only occasionally cloud the author's entertaining account. Most of his explanations are lucid and smooth. In the end, Kakalios demonstrates that if one suspends belief and aceepts that radioactive spiders or mutant arch-criminals exist, much of the physics in comic books is surprisingly reliable. From Newtonian mechanics to the quantum world, comic-book authors generally know what they're talking about. And with The Physics of Superherwes as a guide, now so will their readers.
10.1126 /science. 1121863

Free Webcast

View the keynote presentations and featured presentations from the 2005
Drug Discovery Technology ${ }^{6}$ Development World Congress

www.drugdisc.com

2
2
3

Learn information on new regulatory and scientitic pathways that are designed to make the development of novel drug more predictable and less timeconsuming: hazardous and costly. Also hear the progress of the FDA's reforms to facilitate the modernization of drug manufacturing.

Pharmaceutical R\&D -

 The World's Hope for Tomorrow's Cures John L. LaMattina, Ph.D., President, Pfizer Global Research and DevelopmentThe Pharmaceutical Industry is in the midst of challenging times. Despite this environment, Pfizer strongly believes that this is an ideal time to be doing new drug research and that size will be a critical determinant of future success Learn abrut Ptizer's R\&D strategy to succeed in challenging times.

© invitrogen* SAGE Publications

Mark Your Calendar

IBC's 11 th Annual World Congress

August 7-10, 2006 - Boston. MA

WMD SensorsSearch and Seizure

Don Prosnitz

0n II Junc 2001, the Supreme Court held in Kyllo v United States (f) that law enforcement's warrantless viewing of a private residence with advanced senseenhancing technology, an infrated camera, was unconstitutional. The Fourth Amendment states, " $[T \mid$ he right of the people to be secure in their persons, houses, papers, and effects. against unreasonable searches and seizures, shall not be violated and no Warrants shall issuc, but upon probable cause...." Three months later, terrorists attacked the World Trade Center and Pentagon. The next month. anthrax was mailed to members of Congress. The science and technical community was mohilized to design and deploy advanced sensors not in general public use capable of detecting chemical, biological, and nuclear weapons. Virmally all operational scenarios for detecting weapons of mass destruction (WMDs) prechude obtaining either prior consent for a search or a wariant.

Terronists and WMDs will be with us for the foreseeable future. New technology to combat these threats should not he developed in a legal vacuum. Balancing security and civil liberties is a shared borden. Courts, legislatures, citizens, and the technical community must all participate.

In light of $K y / t h$, how can searching for WMDs be made compatible with the Fourth Amendment? A search meant physical trespass until 1967, when the Supreme Court held that the Constitution protects people, not places, and that the govemment may not violate an individual's reasonable expectation of privacy. When defining a rasonable expectation of privacy, the Court has considered the location of a search (homes are the most inviolate), activity revealed by the scarch [intimate details are inherently private (2)], if proactive actions were taken to protect privacy, the objective of the search [there is no expectation of privacy in contraband (3, 4)], and technologies used to conduct the search [there may be an expectation of privacy if a sensor is not in gencral public use (5)].

Detaining or even delaying an individual by conducting a WMD search at a roadblock

[^2]is a seizure. An individual or possessions may be seized without a warant given reasonable, articulable suspicion of criminal activity, but undue delay 「e.g., 90 minutes to locate a drug-sniffing dog to justify probable canse (4)] may lead to a later determination that the seizure was unreasonable.

To permit suspicionless, random seizures (c.g., highway checkpoints), courts have balanced (i) the gravity of public concem served by the seiznre, (ii) the effectiveness of the scizure in advancing the public interest, and (iii) the severity of interference with individual liberty (6). The threat of WMDs may be so great that it will trump all other factors, I Lowever, at least one court held that a "yellow alert" is not enough to justify nonspecific searches (7). Because quantitatively measuring deterrence against terrorism is problematic, judgments about effectiveness will likely remain with govermment officials and will be adjudicated by the courts. Interfering with individual liberties is usually interpreted to mean the length of seizure, extent of physical intiusion, intimate details revealed, area searched, and public humiliation.

Developers of WMD detectors cannot anticipate fiture court decisions, but they can apply four criteria to address traditional constitutional limits:

Sensor discretion is crucial. A nonintrusive detector that only discloses contraband has the best chance of being ruled permissible. Although Justice John Paul Stevens prodicted that even the "perfectly discriminating mechanical sensor" would be prohibited by the Kyllo decision (8), the capability of the infrared camera most offensive to the Conrt was its potential to reveal lawful, intimate activities inside a home. Recently, a search dog sniffing outside a private residence was ruled admissible only because ". ..it did not explore the details of a house... and can do no more than reveal the presence or absence of contraband." (9). Portable mass spectrometers are being developed to detect and identify chemical and perhaps biological weapons. Would such a sensor that reveals all the volatile chemical substances in a residence be ruled acceptable?

To be truly effective, next-gencration detection systems must be able to process all available signals-spectral, spatial, chemi-
cal, nuclear, and electromagnetic-but reveal no information except the presence or absence of contraband. Systems designed to support arms control and treaty verification include information barriers to meet similar requirements. Inspectors must confirm the presence of Special Nuclear Material in warheads being dismantled without revealing classified design information.

Performance must be well documented. Test data might be required to justify probable cause for a search. The jssue of error rates will certainly surface. Justice David Souter's dissent in Illinois v. Caballes (in which the Court ruled that a dog sniff without articulable suspicion was permissible) stated that the decision in United States $\%$. Place to allow dog sniffs was based on an untenable assumption "...that dogs do not crr." (10). Designers must carefully characterize their systems to demonstrate overall effectiveness and specificity for contraband. If the systems have information barticrs, then intermediate results that would normally confirm proper operation will not be available. Appropriate tests will have to be designed and used frequently.

Sensor deployment must be demonstraby) effective. This is a matter for operations research and deterrence theory.

Sensors must be readily available. Unduly detaining or seizing an individuad or belongings may be impermissible. Inexpensive, portable detectors along with widely networked communication systems can give law enforcement officers immediatc access to information, enabling quick resolution of seizures.

If sejentists and engineers understand the perspective taken by conts in the past, they will stand a much better chance of providing technieal solutions that will balance the Fourth Amendment and civil liberties against the modern realities of terronist threats.

References and Notes

1. Kyflo v. United States, 533 US. 27, 27 (2001).
2. R.Aronov, Quinnuipac L. Rev. 22, 769, 785 (2004).
3. United States v. facobsen, 466 U.S. 109 (1984).
4. United States v. Place, 462 U.S. 696, 696 (1983)
5. (J), P. 34.
6. Brownv. Texas, 443 U.S. 47, 51 (1979).
7. Bourgeous V.Peters, 387F. 3d 1303, 1312 (11th Lir. 2004).
8. (?), p. 44 (Justice Stevens, dissenting).
9. Smith v. Texas, Lourt of Appeals of Texas 1st Distr. (01-02-00503-CR) (2004).
10. ftimois v. Caballes, 543 U.5. (2005) (Justice Souter, dissenting): (www.supremecourtus.gov/opinions/ 04pdf/03-923.pdf).
11. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG48. I am grateful to E.C. DuMont and D.J. Givelber for reading an earlier version.
10.1126/science. 1115536

The Tree-Thinking Challenge

David A. Baum, Stacey DeWitt Smith, Samuel S. S. Donovan

The central cham of the theory of evolution as laid out in 1859 by Charles Darwin in The (rigin of Specier is that living species, despite their diversity in form and way of life, are the products of descent (with modification) from common ancestors. To communicate this idea, Darwin developed the metaphor of the "tree of life." In this comparison, living species trace backward in time to common ancestors in the same way that separate twigs on a tree trace back to the same major branches. Coincident with improved methods for uncovering evolutionary relationships, cvolutionary trees. or phylogenies, have become an essential clement of modern biology (7). Consider the case of HIV/AIDS, where phylogenies have been used to identify the source of the virus, to date the onset of the epidemic, to detect viral recombination, to track viral evolution within a patient, and to identify modes of potential transmission (2). Phylogenetic analysis was even used to solve a murder case involving HIV (3). Yet "tree thinking" remains widely practiced only by professional cvolutionary biologists. This is a particular caluse for concern at a time when the teaching of evolution is being challenged, because evolutionary trees serve not only as tools for biological researchers across disciplines but also as the main framework within which evidence for evolution is evaluated $(4,5)$.

At the outset, it is important to elarify that tree thinking does not necessarily entail knowing how phylogenies are inferred by practicing systematists. Anyone who has looked into phylogenetics from outside the ficld of evolutionary biology knows that it is complex and rapidly changing, replete with a dense statistical literature, impassioned philosophical debates, and an abundance of highly technical computer programs. Fortunately, one can inter-
D.A. Baum and S. D. Smith are in the Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA. E-mail: dbaum@wisc.edu; sdsmith4@wisc.edu S. S. Donovan is in the Department of Instruction and Learning, University of Pittsburgh, Pittsburgh, PA 15260, USA. E-mail sdonovan@pittedu
pret trees and use them for organizing knowledge of biodiversity without knowing the details of phylogenetic inference. The reverse is, however, not true. One cannot really understand phylogenetics if one is not clear what an evolutionary tree is.

The preferred interpretation of a phylogenetic tree is as a depiction of lines of descent. That is, trees communicate the evolutionary relationships among elcments, such as genes or species, that conneet a sample of branch tips. Under this interpretation, the nodes (branching points)

But what does it mean to be "more closely related"? Relatedness should be understood in terms of common aneestrythe more recently species share a common ancestor, the more closely related they are, This can be seen by reference to pedigrees: You are more closely related to your first cousin than to your second cousin because your last common ancestor with your first cousin lived two generations ago (grandparents), whereas your last common ancestor with your second cousin lived three generations ago (great-grandparents). Nonetheless, many introductory stidents and even professionals do not find it casy to read a tree diagram as a depiction of evolutionary relationships. For example, when presented with a particular phylogenetic tree (see the figure, left), people often erro-

Which phylogenetic tree is accurate? On the basis of the tree on the left, is the frog more closely related to the fish or the human? Does the tree on the right change your mind? See the text for how the common ancestors (x and y) indicate relatedness.
on a tree are taken to correspond to actual biologieal entities that existed in the past: ancestral populations or ancestral genes. llowever, tree diagrams are also used in many nonevolutionary contexts, which can eause confusion. For example, trees can depict the clustering of genes on the basis of their expression profiles from microarrays, or the elustering of ceological communities by species composition. The prevalence of such cluster diagrams may explain why phylogenetic trees are often misinterpreted as depictions of the similarity among the branch tips. Phylogenetic trees show historical relationships, not similaritics. Although closely related specjes tend to be similar to one another, this is not necessarily the case if the rate of evolution is not uniform: Crocodiles are more closely related to birds than they are to lizards, even though erocodiles are indisputably more similar in external appearance to lizards.
neously conclude that a frog is more closely related to a fish than to a human. A frog is actually more closely related to a human than to a fish becanse the last common ancestor of a frog and a human (sec the figure, label x) is a descendant of the last common ancestor of a frog and a fish (see the figure, label y), and thus lived more recently. 「To evaluate your tree-thinking skills, take the quiz7es (6)].

Why are trees liable to misinterpretation'? Some cyolutionary biologists have proposed that nonspecialists are prone to read trees along the tips $(1,7)$, which in this case yjelds an ordered sequence from fish to frogs and ultimately to humans. This incorrect way to read a phylogeny may cxplain the widely held but erroneous view that evolution is a linear progression from primitive to advanced species (8), cven though a moment's reflection will reveal that a living frog eannot be the ancestor of

PERSPCTIVES

a living human. The correct way to read a tree is as a set of hierarchically nested groups, known as clades. In this example, there are three meaningful elades: human-mouse, human-mouse-lizard, and human-mouse-lizard-frog. The difference between reading branch tips and reading clades becomes apparent if the branches are rotated so that the tip order is changed (see the figure, right). Although the order across the branch tips is different, the branching pattern of evolutionary descent and clade composition is identical. A focus on clade structure helps to emphasize that there is no single, limear narrative of evolutionary progress $(1,7)$.

There are other problems in reading relationships from trees (9). For example, there is a common assumption that trat evolution happens only at nodes. But nodes simply represent places where populations became genetically isolated, permitting them to accumulate differences in their subsequent cvolution. Similarly, living species may be mistakenly projected backward to occupy internal nodes of a tree. But it is ineorrect to read a tree as saying that humans descended from mice when all that is implied is that
humans and mice shared a common ancestor. Thus, for all its importance, tree thinking is fraught with challenges

Trec thinking belongs alongside natural selection as a major theme in evolution training, Further, trees could be used throughout biological training as an efficient way to present information on the distribution of traits among specics. To this end, what is needed are more resources: computer programs (/ $/$), educational strategies $(I, I 2)$, and accessible presentations of current phylogenctic knowledge (13-15).

Phylogenetic trees are the most direct representation of the principle of common ancestry - the very core of evolutionary theory-and thus they must find a more prominent place in the general public's understanding of evolution. As philosopher of science Robert O'Hara (16) stated, "just as begimning students in geography noed to be tanght how to read maps, so beginning stidents in biology should be taught how to read trees and to understand what trees communicatc." Among other benefits, as the concept of tree thinking becomes better understood by those in the sciences, we can hope that a wider
segment of society will come to appreciate the overwhelming evidence for common ancestry and the scientific rigor of evolutionary biology.

References

1. R.J. O'Hara, Syst. Zoof. 37, 142 (1988)
2. K. A. Crandall, The Evolution of HiV (Johns Hopkins Univ. Press, Baltimore, 1999).
3. M. L. Metzger et af. Proc. Natl. Acad. Sci. U.S.A. 99, 14292 (2002).
4. D. Penny, L. R. Foulds, M. D. Hendy, Nature 297,197 (1982).
5. E. Sober, M. Steel, f. Theor. Biot, 218, 395 (2002).
6. See the two quizzes on Science Online.
7. S. Nee, Nature 435, 429 (2005).
8. J. L Rudolph, J. Stewart, f. Res. Sei. Teach. 35, 1069 (1998).
9. M. D. Crisp, L. G. Cook, Jrenos Ecol. Evol. 20, 122 (2005).
10. J. Herron et al., EvoBeaker 1.0 (SimBiotic Software, Ithaca, NY, 2005)
11. D. W. Goldsmith, Am. Biol. Teach. 65, 679 (2003).
12. 5. F. Gilbert, Nat. Rev. Genet. 4, 735 (2003).
1. J. Cracraft, M. J. Donoghue, Assembling the Tree of Life (Oxford Univ. Press, Oxford, 2004)
2. R. Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution (Houghton Mifflin, New York, 2004). 15. Tree-Thinking Group (www.tree-thinking.org).
3. R. J. O'Hara, Zool. Scripta 26, 323 (1997).

Supporting Online Material

www.sciencemag. org/cgi/content/full/310/5750/979/DC1 Tree-Thinking Quizzes I and II
10.1126/science. 1117727

Following the Flow of Energy in Biomolecules

Paul M. Champion

Some biological molectles, such as those in visual or photosynthetic systems, have evolved to efficiently convert energy from one form to another, IFow do these molecules channel energy rapidly and efficiently so that useful work can be performed without this energy being dissipated ineffectively into the surroundings? Dissipation of molecular vibrational excitation energy typically takes place on picosecond time seales, so biological molecules must be able to channel energy rapidly and cfficiently if they are to be able to direct it in a useful manner, In biological systems excited by light, the nonradiative electronic transitions can oceur on time scales ($\ll 100^{12} \mathrm{ps}$) that are even faster than vibrational energy dissipation ($1-3$), hinting at how nature solves the problem of directing encrgy flow: ()n page lo06 of this issure, Kuknia et al. (4) take an important step forward in defining the process of directed energy flow in the visual pigment rhodopsin.

The author is in the Physics Department and the Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA O2115, USA. E-mail: p.champion@neu.edu

Photoexcited biological molecules offer a unique opportunity to monitor the evolution of excitation energy as it transforms a reactant molecule into its final products. With the advent of appropriate femtosecond laser techniques (5), it has become possible to examine the underlying dynamies of the elementary vibrational and electronic excitations that guide the structural changes and, ultimately, the finction of a variety of biomolecules ($6-8$). The work presented by Kukura et af. conhances our ability to monitor rapid structural changes in such molecules by introducing the technique of femtosecond stimulated Raman spectroscopy (FSRS), In their report, Kukura et al. follow the evolution of the retinal chromophore as it is excited to photorkodopsin and decays into bathorhodopsin, all within the first picosecond of the visual process. They do this by taking adyantage of the broad spectral bandwidth of their probe pulse to obtain very high quality time-resolved stimulated Raman spectra over the range of 600 to $2000 \mathrm{~cm}^{-1}$.

How does this experiment generate ultrafast time resolution, as well as the high
spectral resolution associated with Raman spectra, without violating the uncertainty principle's Although not emphasized in the report by Kuknra ef al., these authors are filly aware (9) that the underlying time scale for the generation of the Raman photon is dictated by the dephasing time of the coherence between the initial and final vitrational levels of the material undergoing the Raman process. A typical time seate for the vibrational dephasing time is on the order of $10^{-12} \mathrm{~s}$, which translates to a 10 cm^{-1} Raman bandwidth. This means that the FSRS experiment reads out Raman radiation from the sample that is averaged over its vibrational dephasing time window (that is, the stimulated Raman signals continue to appear at the detector, even after the probe pulse has passed through the sample). Thus, there is no violation of the uncertainty principle. However; being able to control the "gating" of the Raman coherence by changing the time delay between the photochemical pump and the broadband probe allows the dephasing time window to be moved so that rapid structural dynamics can be monitored. Changes in the vibrational frequencies that take place within the dephasing time window affect the FSRS lineshape, and the authors have done a conwincing job of simulating these lineshape changes as shown in the supporting online material of their paper.

A key conclusion of the work on rhodopsin is that low-symmetry hydrogen out-of-plane (HOOP) wagging motions
allow the system to evolve extremely rapidly ($\sim 200 \mathrm{fs}$) onto the ground-state electronic surface of the product, where much of the ensuing structural change of the retinal chromophore (the cis to trans isomerization) actually takes place. This is a paradigm shift from the usual description of retinal isomerization reactions, where the electronic and nuclear structures are often taken to evolve together in time within a one-dimensional reaction coordinate model that involves multiple intermediate states. In contrast, a very rapid transition to the electronic ground state of the product leads to an impulsive nuclear response composed of those vibrational motions that are coupled to the electronic state changes (those nuclei that fecl forces due to the change in the electron distribution are said to be "coupled"). Because these electronic forces are associated with the product electron distribution, they naturally direct the nuclei toward the final product structure with high efficiency following the rapid electronic transition. Intermediates on such a pathway are simply a measure of the progress of the structural part of the reaction on the product ground-state electronic surface

Similar conclusions have been reached in femtosecond coherence studies of diatomic ligand dissociation from heme proteins (7, 10). These studics show that it is the ulltrafast transitions of the iron electrons that trigger and direct the resulting nuclear motion of the heme on its ground-state photeproduct electronic surface. The surface crossing "scam" for dissociation, shown in the top panel of the figure, is where the electronic part of the reaction takes place. The crossing seam is analogous to the conical intersection (/I) mentioned by Kulkura ef al., where HOOP modes couple the ground- and excited-state electronic surfaces. It remains unclear precisely what mediates the highly efficient coupling between the elcectronic surfaces in the heme system, but spin-orbit coupling, as well as coupling by out-of-

Good vibrations. (Top) A top-down view of the intersection of the initial photoexcited-state electronic surface (thin tan contour lines) of the heme in ligated myoglobin (labeled MbL^{*}) and the photoproduct ground-state electronic surface (labeled Mb). After photoexcitation of the r-electrons of the heme chromophore (yellow region), the iron d-electrons rapidly reconfigure within their localized orbitals and go from a spin of $S=0$ in MbL * to $S=2$ in Mb . This exerts strong local forces on the nuclei surrounding the iron atom that move the system along the coordinate(s) q. The simplified picture depicts the photodissociation of the diatomic ligand (blue circles labeled L) along the iron-ligand coordinate r, as well as the coupling of the reaction to other chromophore and/or protein modes labeled q. The ensuing coherent vibrations of the reaction-coupled q-modes are specific to the ground state and appear within 100 fs of the photochemical pump (7, 10). (Bottom) The thermally activated reverse reaction as the ligand binds to the heme along the ground-state electronic surface. The diatomic ligand is "trapped" by electronic coupling to nuclear coordinate(s) q when the period $\left(\tau_{n}\right)$ for the return to the binding seam is longer than the time it takes to dissipate vibrational energy.
plane heme-ligand stretching and bending modes, are likely candidates.

Electron-nuclear coupling also plays an important role in thermally driven ground-state reactions (see the bottom pancl of the figure, left). After the system accumulates enough thermal energy to surmount the energy harrier at the crossing seam, the forces of the electronic state change will guide the nuclear motion along q. When the vibrational period (τ_{q}) of mode q is longer than ~ I ps, the system loses enough vibrational energy before returning back to the crossing seam that it becomes trapped in the bound state. Without the reaction coupling to q, the system would rapidly (within the $\sim 60-\mathrm{fs}$ iron-ligand wibrational period) return to the crossing scam along F. with enough energy to escape from the bound-state region. The electron-nuclear coupling of q gives the hiologieal system the time it needs to dissipate encrgy within the bound-state region so that the efficiency of the binding reaction is optimized

As a result of these studies, a scenario for directed energy transport is emerging in which biomolecules have cyolved to make use of the fact that electrons are light and fast, whereas nuclei are heavy and slow. For groundstate reactions, the modes triggered by the electronic forecs can help to trap the system in the desired electronic state. For photoexcited states, the fast electronic decay (mediated by motion along specific modes of appropriate symmetry and frequency) takes place heforc excess energy can escape to the surroundings, and this triggers highly specific electronic forces on the nearby nuclei when the electrons change state. Probably there is a correlation between the localization of the electronic state change and the specificity and efficiency of the nuclear (that is, structural) response in the associated reaction. In the event that the electromic transition is more delocalized, and therefore structurally less specific, the surrounding proten conformation may be called upon to act as a restraining lattice that helps to direet the elec-

PERSPECTIVES

tronic forces so that the structural part of the chromophore reaction is guided to the desired outcome. In turn, this can set up action-reaction forces on the protein that lead to specific and desired conformational changes extending over the much longer length and time scales necessary for the proper finction of larger biologieal assemblics. (1980).
2. J. Breton, J-L. Martin, A. Mingus, A. Antonetti, A. Orszag Proc. Natt.Acad. Sci. U.S.A. 83, 5121 (1986)
3. R. W. Schoenlein, L. A. Peteanu, R. A. Mathies, C. V. Shank, Science 254, 412 (1991)
4 P. Kukura, D.W. McCamant, S. Yoon, D. B. Wandschneider R.A. Mathies, Science 310, 1006 (2005).
5. A. Zewail, Pure Appt. Chem. 72, 2219 (2000).
6. T.Brixner et al., Nature 434, 625 (2005).
7. L. Zhu, J.T. Sage, P. M. Champion, Science 266, 629 (1994).
8. Q. Wang et at, Science 266, 422 (1994)
9. D. W. McCamant etal., Rev. Sci. Instrum. 75,4971 (2004).
10. F. Rosca et at., f. Phys. Chem. A 106, 3540 (2002).
11. Special issue on non-Adiabatic Effects in Chemical

Dynamics, Faraday Discuss. 127 (2004).

The Photosynthesis "Oxygen Clock" Gets a New Number

James E. Penner-Hahn and Charles F. Yocum

Despite decades of engineering effort devoted to solar energy conversion, artificial solar systems still capture only a trivial amount of energy compared with the amount captrred by plants, green algate, and cyanobacteria through photosynthesis. On page 1019 of this issue, laumann et al. ($/$) provide new insight into the mechanism of biological solar energy conversion. Using time-resolved spectroscopy to analyze the dynamical processes of photosystem II, they identify an important intermediate step in oxygen evolution More generally, this demonstriation that time-resolved struetural data can be measured for the metal site in a dilute enzyme on time scales as short as $10 \mu \mathrm{~s}$ opens the door to more detailed characterization of biochemical kinetics of other metalloenzymes.

Photosynthesis converts solar energy into chemical energy with nearly 100% efficiency and negligible toxic by-products. At the heart of photosynthetic energy transduction is a multipolypeptide complex called photosystem II, which catalyzes the oxidation of water, splitting it into electrons and oxygen. The former product is used in the dark-reactions of photosynthesis to reduce carbon dioxide to the carbohydrates. This ultimately supplies food that is consumed by the rest of the biosphere. The latter product is the source of Earth's oxygenrich atmosphere.

The catalytic center of photosystem II is the oxygen-evolving complex (also known

The authors are in the Departments of Chemistry and Molecular, Cellular, and Developmental Biology and the Biophysics Research Division, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA. E-mail: jeph@umich.edu
as the water-oxidizing complex), a $\mathrm{Mn}_{4} \mathrm{Ca}$ cluster that is the site of oxygen-oxygen bond formation. This is the rate-limiting chemical step in water oxidation. Recently, several crystal structures hawe begin to elticidate the structural organization of photosystem II, suggesting possible arrangements of the Mn and Ca ions (?-4). Ilowever,
because of the low resolution of these data Lpositional uncertainties (5) ~1 to $1.5 \AA$] and the sensitivity of the crystals to radiation damage (6) detailed mechanistic questions regarding the chemistry of oxygen formation have had to rely on spectroscopic meastrements. (Spectroscopy, unlike most crystallography, allows the system to be followed as it goes through its catalytic paces.) Almost all of the available wavelengths of light, from infrared to mierowave and visible to x-ray, have been used to study photosystem II. Although each has provided a piece of information about the steps in the catalytic cycle of the oxygen-evolving complex, only microwaves (electron paramagnctic resonance) and x-rays (x-ray absorption spec-
troscony) have been used sucecssfully as specific probes of the catalytic site, and only x-ray absorption spectroseopy can be used to study each of the different oxidation states.

The basic mechanism of photosynthetic water oxidation has been known for nearly 40 years, since the discovery that oxygen is evolved after every fourth flash of light (7). This has implied that there must be at least five different states of the complex that are converted cyclically, known as the classical Kok cycle (8) (see the figure, inner circle). The five states are named S_{0} to S_{4}, with the subscript indicating the number of oxidizing equivalents that are stored in the entire oxygen-evolving complex. It has since been recognized that this advancement of S

Mechanism of photosynthetic oxygen evolution. (Inner circle) Classical Kok cycle, showing five kinetically resolvable S states (S) of the manganese cluster of the oxygenic photosynthetic photosystem II reaction center. Red arrows indicate light-driven oxidation steps and black arrows indicate chemical steps. (Outer circle) Modern description of the Kok cycle, distinguishing between light-driven oxidation of a tyrosine cofactor by chlorophyll (red arrows) and kinetically resolvable chemical oxidations (black arrows). The rate constants of each chemical oxidation step (1) show that the x-ray absorption "edge" energy for the S_{4} state (yellow box) is the same as that for S_{3}, suggesting that the Mn oxidation state is the same in S_{3} and S_{4}. The putative S_{4} state (green) may exist as a discrete species, or may simply represent a transition state between S_{4} and the generation of the S_{0} state and oxygen.
states involves initial oxdation of a chlorophyll dimer (P_{650}), which in turn oxidizes a tyrosine cofactor, Y_{7}, that is adjacent to the manganese eluster. In this model (see the fignte, outer circle), the S-state nomenclature now refers specifically to the manganese oxidation state, and the tyrosine is denoted as Y_{γ} or $Y_{\gamma}{ }^{\text {ch }}$.

The oxygen-evolving complex ean be converted exclusively to the S_{1} state by storage in the dark, and the S_{0}. S_{2}, and S_{3} states can be trapped in high yield through various physical and chemical manipulations followed by rapid freczing. Ilowever, until recently the S_{4} state has proven refractory, and this has limited efforts to understand the details of water oxidation. In par-
ticular, it was unclear whether " S_{4} " existed as a discrete chemical intermediate, or whether it might simply represent a tiansition state containing S_{3}, with an oxidized tyrosine ($\mathrm{S}_{3} \mathrm{Y}_{7} z^{0 x}$). The latter would imply an intimate role for $Y_{Z}{ }^{\text {six }}$ in water oxidation, perhaps through hydrogen-atem transfer (9). In contrast, if S_{4} exists as a discrete intermediate, then a range of mechanisms for the terminal reaction preceding oxygen formation are possible. A subtle delay in oxygen release relative to $\mathrm{Y}_{\mathrm{Z}}{ }^{\mathrm{ox}}$ reduction ($10, I I$) hinted that S_{4} might exist as a discrete intermediate rather than simply being a transition state between S_{3} and S_{41}. This conclusion was strengthened by a recent experiment showing that if one increases the partial pressure of oxygen on photosystem II, water oxidation is blocked at S_{3}, This suggests that increasing oxygen concentration shifts the equilibrium from S_{+} oxygen to $\mathrm{S}_{3}\left(I_{2}\right)$.

Haumann et at, (l) used a conceptually straightforward but experimentally challenging "pump-probe" time-resolved x-ray spectroseopy experiment to obtain direct structural evidence for an S_{4} state. To appreciate the difficulty of this approach, it is important to remember that even "simple" static x -ray absorption spectroscopy of photosystem Il is challenging because of the intrinsically low Mn concentration. The present measurements would have been impossible without the high-brightness third-generation synchrotron sources that provide higher x-ray flux. Kinetic traces (l) show clearly that the $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ and $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ steps have very similar transient behavior, although the latter is somewhat slower. This finding is important because of the continuing controversy over whether Mn has been oxidized during the $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ transition (13). The llaumann et al. data provide further support for the growing consensus that Mn is oxidized during both the $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ and $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ transitions. In contrast. the kinetic transient for the $\mathrm{S}_{3} \rightarrow \mathrm{~S}_{0}$ transition is distinct, with a $250-\mu \mathrm{s}$ lag phase followed by a slow I.I-ms transient phase. The 1atter phase is of opposite sign, representing Mn reduction to the S_{0} state, and corresponds to the observed rate of oxygen release and reduction of $\mathrm{Y} \%^{\circ \mathrm{x}}$. The former, more rapid phase provides direct cyidence for the existence of a discrete S_{4} intermediate state.

The lag phase indicates that the S_{3} and S_{4} states have similar x-ray absorption spectra and rules out several possible mechanisms for oxygen evelution. There has been widespread speculation that water oxidation might use a manganyl ($\mathrm{Mn}=0$) species as the oxidant (9). This possibility was recently ruled out for S_{3} (14). The present work by Ilaumann et at. extends this exclu-
sion to S_{4} because neither the S_{3} nor S_{4} stato shows an intense transition on the lowenergy side of the x -1ay absorption "edge" (this is the abrupt increase in x-ray absorption cross section that occurs when the x -ray energy matches the binding energy of the Mn Is clectron). Such "pre-edge" transitions are the spectroscopic signature of manganyl species (14). Altematively, the highpressure oxygen studies (I2) were interpreted in terms of an S_{2} state with an associated $\mathrm{H}_{2} \mathrm{O}_{2}$ molecule for " S_{4}." This too is now excluded, because the Mn would be reduced in this state, relative to the provious S_{s} state.
Haumann ef al. (I) favor a model in which " S_{4} " contains $S_{3} Y_{z}{ }^{\text {Dx }}$. That is, the for1th oxidizing equivalent in the water oxidation cycle resides on the tyrosine cofactor, On the basis of the positive reaction entropy and the equilibrium isotope effect for S_{4} formation, they suggest that the 250$\mu \mathrm{s}$ lag phase represents the lifetime for proton release from an intermediate chemical species bound to the oxygen-evolving complex. Tests of this and more detailed mechanistic studies will await future experiments. For now, the availability of the intense x -ray heams available at third-generation synchrotron sources has permitted the detec-
tion of a new intermediate in the water oxidation reaction. With this demonstration of feasibility, a wide range of other applications of microsecond time-resolved x-ray absorption spectroscopy to chemically and biologically important reactions can now be imagined.

References

1. M. Haumann et al., Science 310, 1019 (2005)
2. J. Barber, K. Ferreira, K. Maghlaoui, S. Iwata, Phys. Chem. Chem. Phys, 6,4737 (2004)
3. J. Biesiadka, B. Loll, J. Kern, K. D. Irrgang, A. Zouni, Phys. Chem. Chem. Phys. 6, 4733 (2004).
4. N. Kamiya, J. R. Shen, Proc. Natl. Acad. Sci. U.S.A. 100, 98 (2003).
5. D.W.J.Cruickshank, Acta Crystaflogr. D 55, 583 (1999).
6. J. Yano et at., Proc. Natl. Acad. Scj. U.S.A. 102, 12047 (2005).
7. P. Joliot, G. Barbieri, R. Chabaud, Photochem. Photobiol. 10, 309 (1969).
8. B. Kok, B. Forbush, M. McGloin, Photochem. Photobiot. 11, 457 (1970)
9. C. W. Hoganson, G. T. Babcock, Science 277, 1953 (1997).
10. M. R. Razeghifard, R.J. Pace, Biochemistry 38, 1252 (1999).
11. F. Rappaport, M. Blancharddesce, J. Lavergne, Biochim. Biophys.Acta 1184, 178 (1994).
12. J. Clausen, W. Junge, Nature 430, 480 (2004)
13. J. Messinger et al. J. Am. Chem. Soc. 123, 7804 (2001). 14. T.C.Wengetal., f. Am. Chem. Soc. 126, 8070 (2004).

PLANETARY SCIENCE

What Do We Need to Know to Land on the Moon Again?

Maria T. Zuber and lan Garrick-Bethell

July 1969, the Apollo 11 hnar excmisio module Eagle deseended toward the Sea of Tranquility with Neil Armstrong in command. At 300 m above the lunar surface, short on fuel and looking for at

Enhanced online at

 www.sciencemag.org/cgi/ content/full/310/5750/983 smooth area on which to land Armstrong "did not like what he saw. A crate as big as a foothall ficld was just ahead surrounded by a field of boulders, some as big as Volkswagens" (I). Despite the obstacles, Eagte touched down safely, delivering the first human beings to the surface of the Moon in one of humankind's greatest technological achievements. As the United States and other nations actively plan to return to the Moon, a renewed discussion of the scientific knowledge of the lunar surfice that is needed for future landings is appropriate.[^3]Of the dramatic and successfil Apollo I landing, one thing can be said with certainty: We won't do it like that again. Starting with the Ranger 7 spacecraft and continning with the Lunar Orbiters, images werc used to characterize potential lunar landing sites by aceumulating statistics of small-scale surface slopes and roughness. Most landings occurred in the maria, relatively smooth volcanic plains marred by small craters surrounded by rougher ejecta blankets and blocks. Two Apollo missions. 14 and 16 , landed in non-mare (highland) regions, thanks to the skill of astronauts in manually piloting the lunar modules to locations safc enough for landing. But in today's risk-averse climate, the Apollo-era knowledge of the lunar surface-and, arguably, even our present knowledgewould not meet expectations with respect to safety, Future landings on the Moon. whether human or robotic, will demand a greater scientific knowledge of the lunar surface, In the selection of a landing site. two factors are relevant: landing safety and

PERSPECTVES

fulfillment of mission objectives. Examples of the latter include in situ scientific hypothesis testing and resource assessment.

In the coming era of lunar exploration, a sensible and readily achievable modus operandi would be that future candidate landing sites undergo a level of serutiny similar to that of the recent landed missions on Mars. The process to select the Pathfinder and Mars Exploration Rover' landing sites $(2,3)$ represents an extraordinarily successfil example of how scientific information was used to make informed engineering decisions that in tuin enabled scientific discovery. Whether the goal of a landed mission is driven by exploration or science (leaving aside esoteric debate concerning the difference between the two).
resolution imaging at visible and thermal infrared wavelengths (5). These observations, coregistered with compositional information from orbital spectral sensors, led to the selection of the Meridiani Planum site that provided cvidence of a water-rich past on Mars (6).

If we apply criteria used for landing site assessment at Mars to the Moon. our required knowledge is "not there yet" on a global basis. A primary order of husiness is being able to land precisely where one wants to go, which requires an accurate lat-intde-longitude grid referenced to the planetary center of mass. On the Moon, positional knowledge varics considerably with location. On the near side, limited locations are known relative to each other to within
quality of the lunar geodetic grid would for example, challenge our ability to explore the most topographically complex and sejentifieally important target on the far side: the South Pole-Aitken Basin, 2500 km in diameter and 8 km deep, a potential treasure trove for studying the internal composition of the Moon (12).

A key near-term goal of lunar exploration is resource assessment, in particular the definitive identification of water ice in permanently shadowed craters near the poles (73). Any long-duration mission in the vicinity of permanently shadowed craters would want to avail itself of another valuable resource: near-continuous sunlight that could satisfy power requirements (14). Unfortunately, topography of the quality

Potential landing sites. (Left panel) Full lunar year illumination cycle at the south pole, calculated over 12 lunations (each 29.5 days) in 1994, from 10 January to 31 December, sampled every 4 hours. (Top right) Close-up of south polar region, with crater rims of de Gerlache and Shackleton dominating the highly illuminated terrain. (Bottom right) Same calculation for the north pole. Relative to the south pole, similar amounts of terrain are illuminated in the 1% to 60% range, but less area is found with higher illumination values.
the arcas of greatest interest on the Moon will in general be more difficult to access and traverse than were the Apollo sites. In terms of scientific knowledge, a safe landing will require accurate characterization of local slopes on basclines of tens to hundreds of meters, and information about roughness on the seale of meters to decimeters (4). In addition, knowledge of soil properties combined with rock abundance and size distribution data will be required to assess "trafficability" of robotic rovers or human transport vehicles. On Mars, this knowledge has been achieved by carefil analysis of candidate landing sites, using a combination of precise altimetry and high-
meters horizontally and to within centimeters radially, thanks to precise positioning provided by laser ranging to retroreflectors at Apollo sites and Soviet landers (7). But globally, absolute positions are known to no better than a few kilometers horizontally and 100 m radially (8). Positional knowlcdge on the far side is less well known than anywhere else on the Moon, in large part becanse of the poor quality of our knowlcdge of the lunar gravity field (9). In contrast, positions on Mars are known on a global hasis to 100 m horizontally and 1 m radially (10). Without such knowledge on the Moon, precision landing is more complicated ($/ /$) and therefore riskier. The poor needed to unambiguously determine constant darkness or illumination at all near-polar areas does not currently exist. As a case in point, the figure shows a full lunar year illumination cycle at both poles, using topography derived from Earth-based radar observations (15). The majority of south polar terrain is illuminated less than 50% of the time, although near two crater rims at the pole there is $4.7 \mathrm{~km}^{2}$ of noncontiguous area illuminated more than 85% of the time, with a subset of this terrain receiving continuous light for more than 200 days per Earth year. In the north, however, there is only $1.1 \mathrm{~km}^{2}$ of surface with more than 85\% illumination, a discrepancy with illumination estimates ohtained from Clementine spacecraft images collected over 71 days (76). Each data set has limitations; the radar suffers from nonoptimal viewing geometry and spatial resolution, whereas the Clementine images are limited by their short observation period. Thus, definitive conclusions concerning where best to land for missions with polar lighting constraints will requre collection of a more complete data set.

Fortunately, help is on the way. Current and upcoming orbiters, notably FSA's Small Missions for Advanced Research in Technology (SMART-I, now in orbit), along with Japan's SELENE (2006), China's Chang'e l (2007), India's (handrayaan-1 (2007), and NASAs Lunar Recomnaissance

Orbiter (2008), carry diverse payloads that will ensure that the fundamental geophysical, geological, and geochemical data needed to make informed decisions about where to land on the Moon will be available with in the current decade. In the nearly 40 years since the Apollo Il landing enthralled and inspired humankind, scientific information gained in the interim can guide and inform future missions, contributing to a rich and sustained program of lunar discovery.

References and Notes

1. A. Chaikin, A Man on the Moon (Penguin, New York 1994), p. 196.
2. M. P. Golombek, R. A. Cook, H. J. Moore, T. J. Parker J. Geophys. Res. 102, 3967 (1997).
3. M. P. Golombek et af., f. Geophys. Res. 108 10.1029/2003)5002074 (2003).
4. Of course, knowledge of the lunar surface needs to be coupled with the engineering capability of precision navigation, descent, and landing.
5. The Mars Exploration Program Landing Sites website (http://marsoweb.nas.nasa.gov/landingsites) is an outstanding resource that allows users to crossregister and analyze data sets relevant to assessing landing sites on Mars.
6. S.W. Squyres et af., Science 306, 1709 (2004)
7. J. O. Dickey et al., Science 265, 482 (1994).
8. D.E. Smith, M. T. Zuber, G. A. Neumann, F. G. Lemoine, J. Geophys. Res. 102, 1591 (1997).
9. A. S. Konopliv, S. W. Asmar, E. Carranza, W. L. Sjogren, D.-N. Yuan, fcarus 150, 1 (2001).
10. D. E. Smithet al., f. Geophys. Res. 106, 23689 (2001).
11. Mission Evaluation Team, Tech. Rep. NASA TM-X 74200, M4SC-01855 (NASA Manned Spacecraft Center, Houston, TX, 1970).
12. C. M. Pieters, S. Tompkins, J. W. Head, P. C. Hess, Geophys. Res. Lett. 24, 1903 (1997)
13. Radar observations of the lunar polar regions yield conflicting interpretations regarding the presence of high-backscatter regions that could be indicative of water ice (37, 18). Neutron spectroscopy from Lunar Prospector (19) shows the presence of hydrogen in both near-polar craters and various other parts of the Moon, and could correspond to either water or hydrogen nuclei implanted by the solar wind (20).
14. Because the Moon's spin axis is tilted only 1.5°, high elevation points at the poles may be illuminated year-round.
15. J. L. Margot, D. B. Campbell, R. F. Jurgens, M. A. Slade, Science 284, 1658 (1999).
16. B. J. Bussey, K. E. Fristad, P. M. Schenk, M. S. Robinson, P. D. Spudis, Nature 434, 842 (2005).
17. 5. Nozette et al. Science 274,1495 (1996).
1. R. Simpson, G. L. Tyler, J. Geophys. Res. 104, 3845 (1999)
2. W. C.Feldmanet al., Science 281, 1496 (1998).
3. R.R.Vondrak, D. H. Crider, Arn. Sci. 91, 322 (2003).
10.1126/science. 1115126

Separation of Conjoined Hormones Yields Appetite Rivals

Ruben Nogueiras and Matthias Tschöp

When we refer to our "gut feelings," not many of us actually visualize how the gastrointestinal tract spills myriads of small peptide hormones into our bloodstream to activate defined circuits of the central nervous system. Nevertheless, that picture does reflect a current scientific concept called the "guthrain axis." This model consists of a complex network of hormonal and netronal signaling pathways that is believed to balance numerous homeostatic and behavioral processes (1,2). In this context, our stomach does not just collect, process, and transport ingested food, but it also represents a multileveled conversational partner of the central nervous system, A key elcment of this communication process is the hunger-inducing hormone ghrelin, which is believed to convey information about nutrient availability from the stomach to the brain (3, 4),

Zhang and colleagues (5) now report on page 996 of this issue that ghrelin not only has a sibling derived from the same peptide precursor (preproghrelin), but also that this new ghrelin-associated peptide behaves as a physiological opponent of ghrelin. Guided by hioinformatics-based predictions for typical enzymatic cleavage sites, they identified a 23-amino acid region of

The authors are in the Department of Psychiatry University of Cincinnati, Cincinnati, OH 45237, USA and the Department of Pharmacology, German Institute of Human Nutrition, 14558 Nuthetal Germany. E-mail: tschoemh@ucmail.uc.edu
preproghrelin that is highly conserved across species, suggesting a relevant biological function. The authors purified a secreted peptide of the predicted size and sequence from rat stomach tissue and also detected it in rat blood. Similar to ghrelin, which requires posttranslational modification close to its amino terminus by acylation (6), the biological activity of the ghre-lin-associated peptide also depends on modification, but by much more common amidation at its carboxyl terminus.

The surprising finding is the pharmacological effects of the newly identified peptide in comparison with the known actions of ghrelin. Whereas ghrelin increases food intake and body weight (7), the ghrelinassociated peptide decreases food intake and body weight gain in rodents. Moreover,

Zhang ef al. observed that the new peptide decelerates gastric emptying and decreases intestinal contractility in mice, both of which counteract the well-defined effects of ghrelin (8). Through a targeted sercen of mammalian orphan receptors and subsequent analyses in cultured mammalian cells, Zhang ef al. show that the ghrelinassociated peptide binds to and activates the orphan receptor (iPR39 (9). This (ipro-tein-coupled receptor has been mapped to human chromosome 2 and is expressed in multiple tissues, including the stomach, intestine, and hypothalamus. This localization is consistent with a role in energy balance regulation (10). GPR39 is a member' of a family that includes the receptors for ghrelin and motilin, another gastrointestinal hormone that stimulates food intake, gastric emptying, and gut motility (9, / 1). These facts support a somewhat counterintuitive, but nevertheless intriguing, relationship between ghrelin and the ghrelinassociated peptide.

To denote its anorexigenic actions, Thang and colleagues named this now gastric hormone obestatin (from the Latin term obedere, meaning to "devour").

THE GHRELIN-MOTILIN RECEPTOR FAMILY MODULATES APPETITE AND GASTROINTESTINAL MOTILITY			
Ligands	Receptors	Food intake	Gastric emptying
Motilin	Motilin-R (GPR38)	+	+
Neuromedin U	Neuromedin-R1 (GPR66), -R2	\downarrow	\downarrow
Neurotensin	Neurotensin-R1, -R2, -R3	\downarrow	\downarrow
Ghrelin	GHS-R	+	\uparrow
Obestatin	GPR39	\downarrow	\downarrow

The ghrelin-motilin receptor family and their ligands. Each of these gastrointestinal hormones acts on a specific G protein-coupled receptor from the same family to affect food intake and gastrointestinal motility ($9-17$). Similar dual effects on satiety and gastrointestinal motility are known for glucagon-like peptide 1, cholecystokinine, or peptide YY. Collectively, these peptides may serve to couple meal termination with inhibition of upper gastrointestinal function to prevent malabsorption and postprandial metabolic disturbances $(1,2,8)$.

PERSPECTIVES

Inevitably, the terms "obesity" and "statins," a class of lipid-lowering drugs, come to mind, However, obestatin has not heen tested in animal models of obesity and there is no evidence for a lipid-lowering effect. Furthermore, even its effect on body weight appears to be very subtle. The failure of obestatin treatment to decrease leptin levels in mice may indicate lack of lipolytic potency. Effects of obestatin on food intake regulation following administration to peripheral circulation or directly into the brain of mice suggest the typical action profile of a gastrointestinal satiety hormone. However, it is possible that obestatin may simply suppress appetite by triggering nausea or visceral illness. Recent examples have emphasized the importance of excluding nonspecific appetite suppression when examining anti-obesity drug candidates (12). Furthermore, despite sequence homologies between rodent and human obestatin (87%) and GPR39 (93\%) sequences (5, 9), data from rodents cannot always be translated to humans, where the effects of obestatin have yet to be determined.

Another concern regarding a role for obestatin in energy balance regulation arises from its quantification in blood. Although Zhang et al. confirmed earlier findings that the level of plasma ghrelin increases upon fasting and decreases following nutrient ingestion ($5, / I$), they did not observe any changes in circulating obestatin upon fasting or feeding in rodents. Detection methods for differentiating between circulating amidated and nonamidated obestatin are not yet awailable, but could still reveal an association with nutrient availability. Nevertheless, total plasma ohestatin generally appears to be a fraction of the level of plasma ghrelin, Should hormones derived from the same prepropeptide not circulate in an equimolar ratio?

Another peptide precursor that gives birth to antipodal regulators of food intake may provide some answers. The neuropeptide proopiomelanocortin is cleaved into several active fragments that include the appetite-suppressing os- and β melanocytcstimulating hormones ($\alpha-, \beta$-MSH) and the appetite-stimulating hormone β-endorphin (13). Tissue-specific enzymes determine which of these are generated. A similar scenario could determine how and where preproghrelin is fragmented into bioactive peptides. An earlier study postulated one other circulating preproghrelin fragment, a 1.3-amino acid peptide called C-ghrelin (14). In addition, turnover rates of ghrelin

The Yin and Yang personalities of ghrelin and obestatin. Both hormones derive from the same precursor protein and are predominantly secreted by the stomach and released into the blood. Each acts on a different receptor (GPR39 and GHS-R, as shown) and has an opposite effect on food intake, body weight, and gastrointestinal motility.
and obestatin may differ appreciably, according to their acylation or amidation rates, which again would be a parallel to the acetylation of the proopiomelanocortin derivative $\alpha-\mathrm{MSH}$ (15). Dissecting the postransational cleavage, activation, or degradation processes of peptide hormones may reveal elegant enzymatic drug targets Simultaneous activation of an agonist and deactivation of its endogenous functional antagonist could provide a powerful strategy for homeostatic control.

If obestatin lives up to its name as a circulating hormone with a physiologically relevant anorectic as well as an obesitypreventing function, the puzzling discrepancy between the very mild phenotype of mice lacking ghrelin $(16,17)$ and the unsurpassed pharmacological effects of ghrelin on energy balance would receive an unex-pected-but logical-explanation. The
absence of an orexigenic hormone may be counterbalanced by the simultaneous deletion of an equally potent satiety factor. Targeted mouse mutagenesis is widely used as a strategy to unmask or validate the biological function of a gene product. An obvious abnormality of such a knockout mouse is usually interpreted as a reliable indicator of the target's physiological role. However, subtle or absent differences between genedisrupted mice and their wild-type littermates are often regarded as evidence of negligible biological relevance. Such conclusions should be regarded with cation because developmental compensation may mask loss of function. However, rarely has such compensation been defined on a molecular level. The 7 hang et af. findings caution against the interpretation of results based exclusively on gene disruption or messenger RNA quantification due to an additional level of complexity represented by posttranslational processing of proteins.

The discovery of obestatin leaves several questions unanswered. Why does a mouse that is deficient for the ghrelin receptor not exhibit an impressive phenotype? Should the absence of ghrelin action in the presence of an intact obestatin signaling pathway not generate a robust negative energy balance? Why does obestatin, unlike ghrelin, not affect growth hormone secretion from the pituitary gland, despite the presence of the obestatin receptor in this organ? Although the adversarial relationship between ghrelin and ohestatin certainly is an important contribution to our understanding of body weight regulation, the search for a magic bullet against obesity is likely to continueadmittedly, a gut feeling.

References

1. A. D. Strader, S. C.Woods, Gastroenterology 128, 175 (2005)
2. H. R. Berthoud, Neurosci. Biobehav, Rev, 26, 393 (2002).
3. A. J. van der Lely, M. Tschöp, M. L. Heiman, E. Ghigo, Endocr. Rev. 25, 426 (2004)
4. D. E. Cummings, K. E. Foster-5chubert, J. Overduin, Curr. Drug Targets 6, 153 (2005).
5. J. V. Zhang et al., Science 310, 996 (2005).
6. M. Kojima et al., Nature 402, 656 (1999).
7. M. Tschöp, D. L. Smiley, M.L. Heiman, Nature 407, 908 (2000).
8. T. L. Peeters, Gut 54, 1638 (2005)
9. K. K. McKee et af., Genomics 46, 426 (1997).
10. D. Bagnol, Cufr. Opin. Drug Discov. Devel. 7, 665 (2004).
11. A. D. Howard et al., Science 273, 974 (1996).
12. I.G. Halatchev, R. D. Cone, Celt Metab. 1, 159 (2005).
13. M. G. Castro, E. Morrison, Crit. Rev. Neurobiol. 11, 35 (1997).
14. C. Pemberton, P. Wimalasena, T. Yandle, S. Soule, M. Richards, Biochem. Biophys. Res. Commun. 310. 567 (2003).
15. L. Guo, H. Munzberg, R. C. Stuart, E. A. Nillni, C. Bjorbaek, Proc. Natl. Acad. Sci. U.S.A. 101, 11797 (2004).
16. Y. Sun, S. Ahmed, R. G. Smith, Mof. Celf. Biof. 23, 7973 (2003).
17. K. E. Wortley, Proc. Natf. Acad. Sci. U.S.A. 101, 8227 (Z004)

Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons from Ecology

Volker Grimm, ${ }^{1 *}$ Eloy Revilla, ${ }^{2}$ Uta Berger, ${ }^{3}$ Florian Jeltsch, ${ }^{4}$ Wolf M. Mooij, ${ }^{5}$, ${ }^{4}$ Steven F. Railsback, ${ }^{6}$ Hans-Hermann Thulke, ${ }^{1}$ Jacob Weiner, ${ }^{7}$ Thorsten Wiegand, ${ }^{1}$ Donald L. DeAngelis ${ }^{\mathbf{8}}$

Abstract

Agent-based complex systems are dymamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call patternoriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

What makes James Bond an agent? He has a clear goal, he is autonomous in his decisions about achicving the goal, and he adapts these decisions to his rapidly changing situation. We are surrounded by such autonomous, adaptive agents: cells of the immune system, plants, citizens, stock market investors, businesses. cte. The ayzent-based complex systems (1) (AC'Ss) around us are made up of nyyriad interacting agents. One of the most important challenges confronting modern science is to understand and predict such systems. Bottom-up simulation modeling is one tool for doing so: We compile relevant information about entities at a lower level of the systen) (in "agent-based models," these are individual agents), formulate theorics about their behavior, inplement these theories in a computer simulation, and observe the encrgenec of system-level propenties related to particular questions $(2,3)$.

[^4]Bottom-up models have been developed for many types of ACss (4), but the identification of general principles underlying the organization of AeSs has been hampered by the lack of an explicit strategy for coping with the two main challenges of botton-up modeling: complexity and uncertainty $(5,6)$. Consequently, model structure often is chosen ad hoc, and the focus is often on how to represent agents without sufficient emphasis on analy ying and validating the applicability of models to real problenms (5, 7).

A stategy called pattem-oniented modeling (POM) attenipts to nake bottom-up modeling more rigorous and comprehensive ($6,8-10$). In POM , we explicitly follow the basic rescareh program of science: the explanation of observed patterns (1/). Patterns are defining characteristics of a system and often, therefore, indicators of essential underlying processes and structures. Pattems contain infommation on the internal organization of a system, but in a "coded" form. The purpose of POM is to "decode" this information (1f).

The motivation for POM is that, for complex systems, a single pattern observed at a specific scale and hierarchical level is not sufficient to reduce uncertainty in model structure and parameters. This has long been known in seience. For example, Chargaff's rule of DNA base paining wals not sufficient to decode the structure of DNA until combined with patterns fiom x-ray diffraction of DNA and from the tantonecric propertics of the purinc and pyrimiditine bases (12). Thus, in POM. multiple patterns observed in real systens at different hicrarehical levels and seales are used systenlatically to optinize model complexity and to rednec unecrtainty.

POM was fonmulated in ecology, a science with a long tradition of botton-up modeling.

Ecology, in the past 30 years, has produced as many individual-based models as all other disciplines together have produced agent-based models (13), and has foeused more on bottomup models that address real systems and problems (14).

We describe here how observed pattems can be used to optimize model strueture, test and contast theories for agent behavior, and reduec parameter unecrtainty. Finally, we diseuss POM as a unifying frannowork for the seience of agent-based complex systems in geteral.

Patterns for Model Structure: The Medawar Zone

Finding the optimal level of resolution in a bottom-up model's structure is a fundamental problem. If a model is too simple, it neglects essential mechanisms of the real system, limiting its potential to provide understanding and testable predictions regarding the problem it addresses. If a model is too complex, its analysis will be cumbersome and likely to get bogecd down in detail. We noed a way to find an optimal zone of model complexity, the "Mcdawar zonc" (H ig. 1).

Modeling has to stant with specific questions (15). From these questions, we first formulate a conceptual model that helps us decide which elements and proeesses of the real system to include or ignore. With complex systenis, however, the question addressed by the model is not sufficient to locate the Medawar zone becanse ACSs include too many degrees of freedom. Moreover, the conceptual model may too much reflect our perspective as external observers, with our specific interests, belicfs, and seales of pereeption.

A key idea of POM is to use multiple patterns observed in real systenns to guide design of model structure. Using observed patterms for model design directly tics the model's structure to the intemal organization of the real systen. We do so by asking: What observed patterns secm to characterize the systen and its dynamies, and what variables and processes must be in the model so that these patterns conld in principle, encrge? For cxample, if there are patterns in age strueture. sex ratio, and spatial distribution, then aque, sex, and space should be represented in the
model; if we know that agents belave differently at high densitics (c.g., are more aggressive), behavior valiability should be in the model. This use of patterns might forec us to include state vaniables and processes that are only judirectly linked to the ultimate purpose of the model and are not pant of our initial conceptual model. Ideally, the patterns used to design a model occur at difterent spatial and temporal seales and different hicrarchical levels, because the key to understanding complex systems often lies in understanding how processes on different scales and hierarchical levels are bound to each other.

Multiple patterts were key to modeling spatiotemporal dynamics of the beech forests of central Inarope (Fig. 2). Natural beceh forests are characterized by a spatial mosaic pattern of suecessional stages. A cellular automaton model that focused on this pattem only (16) was too poor it structure to reveal the forest's internal organization. But the forests have more characteristic patterns. Different suecessional stages have different patterns of vertical structure: c.g., the climax stage has closed canopy and little understory, and the decaying stage has canopy gaps and an understory of young beech. Therefore, a newer model (17,18) ineludes four height classes (from secdlings to upper canopy) (Fig. 2). The model also explicitly represents individual big trees because canopy gaps are caused by windthrow, an individual-level process. The model's strueture was thus determined by the multiple characteristic patterns: The mosaic pattern detemmed horizontal spatial scale and resolution, the vertical patterns determined the need for height classes, and canopy gaps deternitied that large beeches must be described individually.

When designed to reproduce multiple pattems, models ane more likely to be "structurally realistic" (//f). [n particular, model components (e.g., individuals) comespond directly to observed objects and variables, and processes conespond to the internal organization of the real system. so that the model "not only reproduces the observed real system behavior, but truly refleets the way in which the real system operates to produce this behavior" [(19), p. 5].

Structurally realistic models cat thake independent and testable sceondary predictions. The beech forest model, for example, delivered independent predictions of forest characteristics that were not considered during model development and testing (20). Predictions of age structure in the canopy and the spatial distribution of very old "giant" trees were in good agreencent with observations, considerably increasing the model's credibility and justifying a completely new application: tracking woody debnis (21). Complexity in patternoriented bottom-up models is not simply a burden but can provide rich opportunities to
increase model credibility, gain understanding (fi), and address more questions.

In an example from ecological epidemiology, multiple patterms guided the stepwise design and calibration of a model describing the spread of rabies among rod foxes in central Europe (22). Observed patterns included the large-scale wave of rabies prevalence, disease pockets ahead of the wave, and temporal oscillations of prevalenee at local and regional scales. The resulting model reproduced these patterns, but not by simply applying a preconceived model structure and then fitting it to the patterns: instead one pattern after another was used to gradually refine model structure (23). Structural realism of this model is indicated by the striking mateh between model predictions and a long-term data set of hunted foxes, which combines aspects of rabies cpidemiology (before the onset of rabies control), fox ccology (after control), and their interaction (during control).

In other ACS disciplines, we found only a few models explicitly addressing multiple patterns, although many models were innplicitly based on multiple pattems. A model of consumer markets (24) addresses three pattenns: (i) The statistical distribution of weekly sales of fast-moving consumer goods has fatter tails and thinner peaks than nomal distributions; (ii) there are clusters of high sales volatility: and (iii) market shares of different stores follow power-law distributions. IXactly how these pattems influenced the design of the model is not clear, but pattern (iii) appears to be why the model is spatially explicit: Consumer agents only visit stores that are nearby.

Patterns for Contrasting

 Alternative TheoriesAgents continuously make decisions to reach their goals c.g., survival and reproductive success, profiting in a stock market, finding the best place to settle in an cver-changing environment. ILow do we model these decisions? What information do agents have, what altematives do they consider, and how do they predict the consequences of their decisions? Many studics of ACSs try only one model of decision-making and attempt to show that it leads to results compatible with a limited data set. This practice, however, may lead to the impression that bottom-up models include so many parameters that they can be fitted to data whether or not their structure and processes are valid.

A more rigorous stratcgy for modeling ajeent decisions, or other bottom-up processes, is to use "strong inferenec" (?5) by contrasting altemative decision models, or "theories" $(3,6)$. First. alternative theorics of the agent's decisions are formulated. Next, characteristic patterms at both the individual and higher levels are identified. The altemative theones

Fig. 1. Payoff of bottom-up models versus their complexity. A model's payoff is determined not only by how useful it is for the problem it was developed for, but also by its structural realism; i.e., its ability to produce independent predictions that match observations. If model design is guided only by the problem to be addressed (which often is the explanation of a single pattern), the model will be too simple. If model design is driven by all the data available, the model will be too complex. But there is a zone of intermediate complexity where the payoff is high. We call this the "Medawar zone" because Medawar described a similar relation between the difficulty of a scientific problem and its payoff (47). If the very process of model development is guided by multiple patterns observed at different scales and hierarchical levels, the model is likely to end up in the Medawar zone.
are then implemented in a bottom-up model and tested by how well they reproduec the patterns. Decision models that fail to reproduce the characteristic patterms are rejecten, and additional patterns with more falsifying power can be used to contrast suecessfil alternatives. Rigorous techniçues can be used to design experiments and analyze data (6, 26).

As an example, consider the well-known "boids" model (27) that produces schoolinglike behavior from a simple theory: Individual boids try to avoid collisions, match the velocity of neighboring individuals, and stay close to neighbors. The encrgence of aggregations resembling fish schools from this theory (Fig . 3) however does not prove that boids explains schooling in real fish.

To define theory for schooling of real fish, Huth (28) used obscrvad pattertis and contrasted altenative theones for fish behavior. two patterins characterizing fish schools were defined and quantified: polarization and nearest neighbor distanee (Hig . 3). L: leven alternative theories for how fish adapt swimming speed and direction were formulated. In the first nine theonies, the influence of neighbors is averaged; but in two theories, fish adjust their swimming to only one neighbor-e.g., the one

Review

Real complex system

Fig. 2. Pattern-oriented model design. Observed patterns that characterize old-growth beech forests [(A); images: front, M. Flade; right, C. Rademacher; top, S. Winter] include a horizontal mosaic of developmental stages [(B); x scale: 400 m ; modified from (42)], the vertical patterns of tree size that define the developmental stages [(C), showing the late decaying stage; x scale: -60 m ; modified from (43)], and distributions of fallen large trees [(D), a map of fallen wood; ellipses indicate crown projections of standing trees; x scale: $\sim 60 \mathrm{~m}$; modified from (43)]. To allow these patterns to emerge from it, the model includes a grid-based horizontal structure [(\mathbf{E}), showing grid cells in three developmental stages; x scale: 570 m], a grid-based vertical structure [(\mathbf{F}), showing each grid cell's percentage cover for four height classes; total area shown: 1 ha)], and individual representation of large trees [(G), showing one cell's trees in the largest two height classes; cell area: $\left.204 \mathrm{~m}^{2}\right)$; (E) to (G) modified from (18)].
closest in front. These two "prionity" theories failed to reproduce realistic polarization values (Fig. 3), eliminating them as valid theory.

This cxample shows that looking at one patten may not be sufficient to falsify weak theory: Looking at nearest neighbor distance alone suggested that both types of schooling model produce similar results, but in fact the prionity theories produce schools only as compact, but not as polarized, as real schools. Voreover, the mine theories based on averaging differ widely in assumptions, but the fish school's properties tumed out to be robust to these assumptions. Demonstrating robustress is also key to a bottom-up model's credibility, because it indicates that we captured the most important mechanisms. IIuth and Wissel's model also reproduced several additional patterms not considered during model development, providinge further support for its structural realism.

This pattem-oriented theory development approach is increasingly used in models of ACS. Railsback and IHarvey (9) used a stream trout model to contrast three theories for how individual fish select habitat. Only a new theory that assumes that fish select habitiat to maximize expected survival over a future period reproduced observed pattems of feedings hicrarehy, response to competing specics and predatory fish, seasonal habitat shifts, and response to reduced food availability. Although these pattems are each qualitative, or "weak,"
together they were able to falsify all but one theory of habitat selection.

In a model exploning what determines the access of nomadic herdstnen to pasture lands owned by village fammers in north Cameroon, herdsmen negotiate with farmers for acecss to pastures (29). Two theories of the herdsmen's reasoning were contrasted: (i) "cost priority," in which herdsmen only consider one dimension of their relationship to farmers costs: and (ii) "firiend prionity," in which herdsmen renember the number of agreements and refusals they received in previous negotiations. Real herdsmen sustain a social network across many villages through repeated interactions, a pattern reproduced only by the "friend prionity" theory.

It ceonomics, agent-based model experiments have been used to identify characteristics of artificial stock market investors that reproduce pattems well known from real stock markets (30). These pattems include continual and unpredictable stock price volatility, high skew and kurtosis in the distribution of protits among investors, and an inverse relation between current investment profits and future price instability. Two assumptions were contrasted about how much historic data investors use to predict the outeone of their investment decisions: (i) Investors all use 25year memorics of market data, versus (ii) memony varies fiom 0.5 to 25 years. Although

Model structure

.

d other or any model low-levelmodel is; we can explore null models; and we can contimually refine models by applying additional patterns.

Patterns for Parameters: Coping with Uncertainty

Pattertr-oriented modeling can reduce uncertainty in model parameters in two ways. First, it helps make models strueturally realistic, which usually makes them less sensitive to parameter uncertainty (37). For example, an individual-based coyote population model reproduced an array of observed patterms with no fine-tuming of parameter values taken from the literature (32). The trout model (9) had four parameters that were particularly uncertain yet important; cach had relatively independent effects on four different outputs (size versus abundance, for juveniles versus adults), so they conld be calibrated manmally and independently.

Sceond the realism of structure and mechanism of pattem-oriented models helps paramcters interact in ways similar to interactions of real mechamisms. It is therefore possible to fit all calibration parameters by finding values that reproduce multiple pattems simultanconsly. This techmique is known as "ittverse modeling" (33). For a spatially explicit individual-based model of brown bear dispersal from Slovenia into the Alps (34), a global sensitivity analysis of the uncalibrated parameter set revealed high uncertainty in

REVIEW

model output. To reduce this uncertainty, two data sets were used to identify five patterns. Quantitative criteria for the agreement between observed and simulated patterns were developed. The indirect modeling analysis started with 557 random parameter sets covering the plausible ranges of all parameters. The five observed patterns were used as filters: Only 10 of the 557 parameter sets reproduced all of them. This parameter filtering redweed the model's global sensitivity by a factor of 4 (fig. Sl).

Indirect parameterization is routine in physical process models (i.e., in chemistry, hydrology, and climate modeling), but rare so far in models of ACSs. An encouraging exception is the agent-based model of an ancient society, the Kayenta Anasazi, who occupied the Long House Valley in northeastern Arizona (United States) until 1300 A.D. Paleoenvironmental and archaeological records permitted the development of a detailed, spatially explicit agent-based model of this society and its history (35). These data include estimates of annual potential maize production for each hectare in the study area for the period 400 to 1400 A.D. and records of human settlement in the valley. Theories for agent decisions, for example, splitting households and moving, were based on detailed regional ethnographies.

The model includes variability in mortality, fertility, splitting of households, and maize harvest rates; with eight unknown parameters. To evaluate these parameters indirectly, the time series of the number of simulated households was compared to the historical record. The best parameter set reproduced all important trends and population sizes in the archaeological record. This parameter set also reproduced important features of the spatial distribution of the settlements (Fig. 4) and the gradual northward movement of the population. These spatial pattems can be considered independent predictions, strong indicators of the model's structural realism.

Implications and Future Directions

Patterns are widely used by many modelers, particularly in disciplines where the low-level

Fig. 4. Parameterization and independent predictions of an agent-based model of the Anasazi in the Long House Valley [modified from (35)]. The simulation environment consists of an 80 by 120 grid of 1 -ha squares. Dark gray represents a higher water table; light gray and blue represent a lower water table. White is nonfarmable land. The red dots represent settlements. (Left) The historical settlement in 1125 A.D.; (right) prediction of the simulation model for the same year. The match between data and simulation is imperfect, but the clustering of settlements along the valley boundaries is captured by the model. The model was calibrated not to the settlement patterns but to the population size time series for 400 to 1450 A.D.
entities are physical objects such as atoms and stars, or are relatively easy to represent, such as flocking birds. pedestrians in a panicking crowd, or car drivers ["Brownian
agents" (36): sec also table Sl]. However. POM is the first attempt to explicitly formulate a rigorous and comprehensive strategy for modeling AC'Ss. The POM strategy is a
way to focus on the most essential infonnation about a complex systen's internal organization. Multiple pattems keep us from building models that are too simple in structure and mechanism, or too complex and uncertain. Using patterns to test and contrast alternative theories for agent behavior or other low-level processes is a way for the science of ACS to get beyond clever demonstration models and on to rigorons cxplanations of how real systems are organized and how they respond to internal and external forces. POM is just taking root, and we expect to see its rapid development in the near future.

Bottom-up models are virtual laboratones where controlled experinents distinguish noise from signal in the system's organization. In particular, experiments contrasting hypotheses for the belavior of interacting agents will lead to an accumulation of theory for how the dynamics of systems from molccules to consystens and ceonomics entrge from bottom-level processes. This approach may change our whole notion of seientific theory, which until now has been based on the theories of physies. Theories of complex systems may never be reducible to simple analytical cquations, but are more likely to be sets of conceptually simple mechanisms (c.g., Darwinian natural selcetion) that produce different dynamics and outcomes in different contexts. POM thus may lead us to an algonithmic (37), rather than analytical, approach to theory.

References and Notes

1. "Apent-based complex systems" (ACSs) are often referred to as "complex adaptive systems," but we prefer ACS because it is not clear whether systems are really adaptive, which would require that they have a goal.
2. J. Epstein, R Axtell, Growing Artificial Societies. Social science from the Bottom Up (Brookings Institution MIT Press, Washington, DC, 1996).
3. S. Y. Auyang, Foundations of Complex Systern Theories in Economics, Evolutionany Biology, and Statistical Physics (Cambridge Univ. Press, New York 1998)

See the list of recent reviews of bottom-up models provided in the Supporting Online Material.
5. S. C. Bankes, Proc. Natr. Acad. Sci. U.S.A. 99, 7199 (2002).
6. V. Grimm, S. F. Railsback, Individual-Based Modefing and Ecology (Princeton Univ. Press, Princeton, NJ, 2005).
7. R. Lempert, Proc. Natf. Acad. Sci. U.S.A. 99, 7195 (2002)
8. V. Grimm et al., Sci. Jotat Environ. 183, 151 (1996).
9. S. F. Railsback, B. C. Harvey, Ecology 83, 1817 (200z).
10. T. Wiegand, F. Jeltsch, I. Hanski, V. Grimm, Oikos 100, 209 (2003).
11. Patterns are observations of any kind showing nonrandom structure and therefore containing information on the mechanisms from which they emerge. Complex systems contain patterns at different hierarchical levels and scales. Ecosystems, for example, contain patterns in primary production, species diversity, spatial structure, dynamics of component speries populations, behavior of individual organisms, resource dynamics, and response of all these to disturbance events and stress. Useful patterns need not be striking; qualitative or "weak" patterns can be powerful in combination. For example, we can easily identify a person in a crowd even without a strong pattern (e.g., a photograph) by using a et of weak patterns: sex, approximate ape, hair color, size, etc. Each of these characteristic patterns excludes many individuals.
12. J. Watson, The Double Helix: A Personal Account of the Discovery of the Structure of DNA (Atheneum, New York, 1968)
13. A search for "(individual-based or individualoriented) and model ${ }^{*}$ " and for "(agent-based or agent-oriented) and model ${ }^{* "}$ in the Web of Science database (title, abstract, keywords) yielded 1023 "individual-based" records and 1036 "agent-based" records. A review of the 1023 individual-based records indicates that more than 90% of them are ecological (38)
14. Examples include individual-based models for forest management (39) and population viability analysis (40); see also the POM references and the ecological bottorn-up reviews in the Supporting Online Material.
15. C. Wissel, Theoretische Okotogie-Eine Einführung (Springer, Berlin, 1989).
16. C. Wissel, Ecol. Model. 63, 29 (1992).
17. C. Neuert, C. Rademacher, V. Grundmann, C. Wissel, V. Grimm, Natursch. Landschaftspt. 33, 173 (2001).
18. C. Rademacher, C. Neuert, V. Grundmann, C. Wissel, V. Grimm, For. Ecol. Manage. 194, 349 (2004).
19. B. P. Zeigler, Theory of Modefing and Simulation (Krieger, Malabar, FL, 1985; first published in 1976 by Wiley, New York).
20. C. Rademacher, C. Neuert, V. Grundmann, C. Wissel, Grimm forstwissenschaftiches Centrablatt 120 288 (2001).
21. C. Rademacher, S. Winter, Forstwiss. Centratbl. 122 337 (2003).
22. F. Jeltsch, M. S. Müller, V. Grimm, C. Wissel, R. Brandl, Proc. R. Soc. Lond. Ser. B Biot. Sci. 264, 495 (1997).
23. H. H. Thulke et at., Ecof. Modef. 117, 179 (1999).
24. S. Moss, Proc. Natl. Acad. Sci. U.S.A. 99, 7267 (2002).
25. J. R. Platt, Science 146, 347 (1964)
26. S. L. Peck, Trends Ecol. Evol. 19, 530 (2004).
27. C. W. Reynolds, Comput. Graph. (ACM) 21, 25 (1987).
28. A. Huth, thesis, University of Marburg Germany (1992).
29. J. Rouchier, F. Bousquet, M. Requier-Desjardins, M Antona, J. Econ. Dyn. Controt 25, 527 (2001).
30. B. LeBaron, JEEE Trans. Evol. Comput. 5, 442 (2001)
31. W. M. Mooij, D. L. DeAngelis, Ecol. Appl. 13, 794 (2003).
32. W. C. Pitt, P. W. Box, F. F. Knowlton, Ecot, Modet. 166, 109 (2003).
33. K. P. Burnham, D. R. Anderson, Model Selection and inference, a Practical infomation-Theoretic Approach (Springer, New York, 2002).
34. T. Wieggand, E. Revilla, F. Knauer, Biodivers. Conserv. 13. 53 (2004).
35. R. L. Axtell et af., Proc. Natr. Acad. Sci. U.S.A. g9 7275 (2002).
36. F. Schweitzer, Brownian Agents and Active Particles. Coffective Dynarnics in the Natural and Social Sciences (Springer, Berlin, 2003)
37. D. C. Dennett, Darwin's Dangerous idea: Evolution and the Meanings of Life (Simon \& Schuster, New York, 1995).
38. D. L. DeAngelis, W. M. Mooij, Annu. Rev. Ecot. Evof. Syst., in press.
39. J. Liu, P. 5. Ashton, For. Ecol. Manage. 73, 157 (1995).
40. M. Burgman, H. Possingharn, in Genetics, Demography and Viability of Fragmented Populations, A. G. Young, G. M. Clarke, Eds. (Cambridge Univ. Press Cambridge, 2000), pp. 97-112.
41. C. Loehle, Bioscience 40, 123 (1990).
42. H. Remmert, in The Mosaic-Cycle Concept of Ecosystems H. Remrnert, Ed. (Springer, Berlin, Heidelberger New York 1991).
43. S. Korpel', Die Unwälder der Westkarpaten (Gustav Fischer Verlag, Stuttgart, Jena, New York, 1995).
44. See wow.rug.nlfbiologiefonderzcekfonderzoekgroepen/ theoreticalbiology/peoplePages/hannoPage.
45. A. Huth, C. Wissel, Ecol. Modet. 75-76, 135 (1994)
46. We thank L. Tesfatsion, P. Johnson, B. LeBaron, and T. Kohler for hints to relevant literature; S. Winter, M. Flade, and C. Rademacher for providing photos H. Hildenbrandt for Fig. 3A; and three anonymous referees for valuable comments.

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5750/987/ DC1
SOM Text
Fig. 51
Table S1
References and Notes
10.1126/science. 111668

Multiple Transatlantic Introductions of the Western Corn Rootworm

Nicholas Miller, ${ }^{1}$ Arnaud Estoup, ${ }^{2}$ Stefan Toepfer, ${ }^{3}$
Denis Bourguet, ${ }^{2}$ Laurent Lapchin, ${ }^{1}$ Sylvie Derridj, ${ }^{4}$
Kyung Seok Kim, ${ }^{5}$ Philippe Reynaud, ${ }^{6}$ Lorenzo Furlan, ${ }^{7}$ Thomas Guillemaud ${ }^{1 *}$

Prevention of biological invasions, as opposed to remedial eradication of invasive species, represents the most cost-effective and perhaps only hope for stemming the cuitent homogenization of the world's biota (f). Here we describe the introduction routes into Europe of the westem corn rootworm (IViafrofita lirgifera virgifera, WC'R), the most destructive pest of corn in the United States. Armod with this knowledge, it will be possible to better gange the prevention strategies that might be adopted.

WCR was first detected in liurope in the former Yugoslavia in 1992 and hals since spread throughout nuch of central and southeastern (CSIi) Europe (2). Outbreaks of WCR were subsequently detected in notheast ltaly in 1998 (in Vencto), 2002 (in Pordenone), and 2003 (in Udine); in nothwest Italy and Switzerland in 2000 ; near Paris, France, in 2002 and 2004; and in eastem France, Switzerland Belgiun, the United Kingdom, and the Netherlands in 2003 (2). Although the itrvasion history of WCR is well documented the source populations of the Westem European outbreaks remain urnknown. Because of the sequence of outbreaks, CSE Ennope was generally assunicd to be the sowre of nost, if not all, the Westem Ennopean populations (3). Ilowever, in prinejple, each outbreak conld have originated from Nouth America, C'SE Europe, or one of the other Western liuropean foci.

To diseriminate between these introduction scenalios, we analyzed the genetic variation of Linropcan and American WCR populations at eight microsatellite loci (4, 5). Simple genetic statistics gave uscful but qualitative insights into the origin of most European outbreaks (5) ftable Sij. We then used a model-based approximate Bayesian computation (ABC) method relying on computer simulations $(5,6)$ to quantitatively compare the different introduction secnatios for the Westem European WCR populations (Fig. 1).

Our results are clear-cut and unexpected. Two of the Westem Eunopean populations analyzed did not originate fron Csil l:urope but directly from North America; this scenario was supported by Bayes factors ($B f^{\circ}$) higher than 10^{5} and posterior weights $(P W)$ of ~ 1 for the nonthwestcin Italy and Paris 2002 populations. Morcover, these introductions were independent fiom each other ($B F^{\prime} \geq 159$ and $P W \geq$ 0.94). Aecording to our analysis, the northeastem Italy 2003 outbreak was the only one to originate from CSI: lunope $(B F=183$ and $P W=0.94)$, and the eastem France poprulation was derived from the Paris 2002 population ($B F=3.9$ and $P W=0.45$). The only population with anbiguous origitns was Paris 2004, which could have been denived either from Noith Anerica $\left(B H^{\prime}-2.05\right.$ and $P W$ - (0.70) or from Paris 2002 ($P W=0.22$). The presence of unsampled Iuropean populations acting as

Fig. 1. The most likely scenarios of invasion into Europe by WCR, deduced from the $A B C$ analysis. For each European outbreak, a red arrow indicates its most likely origin; the PW values of the introduction scenarios are in parentheses. Gray arrows represent unresolved scenarios. Large areas where WCR is present are shown in orange. BF values supporting the most likely scenarios of 3.2 to 10 (substantial support), 10 to 100 (strong support), and >100 (decisive support) are indicated by one, two, or three asterisks, respectively; ns, not supported.
altemative introduction sources for the three primary outbreaks (CSI: Burope, northwestern Italy, and Panis 2002) could be ruled out. This was true whether the unsampled population was one of those detected in $2003\left(B F>10^{4}\right.$ and $P W^{\prime}-1$) or a hypothetical population founded in the $1980 \mathrm{~s}(B F>3.6$ and $P W>0.68)$.
tt has boen widely assumed that the lixopean WCR invasion was the result of a single unpredictable introduction. Our finding that there have been at least three independent transatlantic introdnctions of WCR suggests that incursions from North America are chronic. Prevention of future WCR itrvasions will require aetion against multiple invasion routes, which have apparently been used repeatedly and are potentially predictable. Our study also raises questions conecrning. the ehanging cireumstances (such as adaptation by the insect or changes in control measures or transportation practices) that have permitted a sudden and recent burst of transatlantic introductions of WCR.

References and Notes

1. R. N. Mack et al., Ecol. Appl. 10, 689 (2000).
2. J. Kiss et al., in Westem Corn Rootwom: Ecology and

Management, S. Vidal, U. Kuhlrmann, C. R. Edwards, Eds. (CABI, Wallingford, UK, 2005), pp. 29-39.
3. M. Enserink, Scjence 285, 1834 (1999).
4. K. S. Kim, T. W. Sappinģton, Mol. Ecol Notes 5, 115 (2005).
5. Materials and methods are available as supporting material on Science Online.
6. M. A. Beaumont, W. Y. Zhang, D. J. Balding, Genetics 162, 2025 (2002).
7. We thank M. Beaumont, J. Shykoff, T. Lenormand, T. Sappington, P. David, and three anonymous reviewers for helpful comments and the Sante des Plantes et Environnement department of INRA and Direction Générale de l'Alimentation for funding.

Supporting Online Material

Www.sciencemag.org/cgi/content/full/310/5750/992/ DC1
Materials and Methods
Table 51
References and Notes
8 June 2005; accepted 4 October 2005
10.1126/science. 1115871
${ }^{1}$ Biologie des Populations en Interaction, Unité Mixte de Recherche (UMR) 1112 Institute National de la Recherche Agronomique (INRA)-Université de NiceSophia Antipolis, 400 Route des Chappes, 06903 Sophia Antipolis Cedex, France. ${ }^{2}$ Centre de Biologie et de Gestion des Populations, CS 30 016, 34988 Montferrier Cedex, France. ${ }^{3} \mathrm{CABI}$ Bioscience, Switzerland Centre Field Laboratories, clo Plant Health Service, Rarosi ut 110, 6800 Hodmezovasarhely, Hungary. ${ }^{4}$ Physiologie de l'insecte-Signalisation et communication, UMR 1272 INRA, Route de St Cyr, 78026 Versailles, France. ${ }^{5}$ U.S. Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit Genetics Laboratory, Iowa State University, Ames, IA 50011, USA. ${ }^{6}$ Laboratoire National de la Protection des Végétaux, 2 place Viala, 34060 Montpellier, France. ${ }^{7}$ Dipartimento di Agronomia Ambientale e Produzioni Vegetali, Agripolis, via Romea 16, 35020 Legnaro (Padova), Italy.
*To whom correspondence should be addressed. E-mail: guillem@antibes.inra.fr

Research

Articles

Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary

Scott L. Wing, ${ }^{1 *}$ Guy J. Harrington, ${ }^{2}$ Francesca A. Smith, ${ }^{1,3}$ Jonathan I. Bloch, ${ }^{4}$ Douglas M. Boyer, ${ }^{5}$ Katherine H. Freeman ${ }^{3}$

Abstract

Rapid global warming of 5° to $10^{\circ} \mathrm{C}$ during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by $\sim 5^{\circ} \mathrm{C}$ during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO_{2} during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.

At the beginning of the liocene lipoch ~ 55.8 million years ago, global temperatures increased by 5° to 10° C over a period of ~ 10 to 20 thousand years (ky) then retumed to wam background elimates over the sueceeding $\sim 100 \mathrm{ky}(1-4)$. This event, the Paleocenelooenc thermal Maximun (PliCM) (5), coincided with a global negative carbon isotope cxcursion (CI:) and calcium carbonate dissolution in the deep ocean, which are consistent with a large release of ${ }^{13}$ (-depleted carbon to the ocean and atmosphere (6). Scveral sourees have been proposed for this carbon: ocem-floor clathates (7), thermogenic methane (8), and burning of peat and/or shallowly buried coals (9).

Bintic events at the Pl:̈M include mass extinction among benthic foraminitera (10), changes in the latitudinal range and species composition of manine plankton (11,12), and slifts in the taxonomic and trophic conposition of tenestial vertebrate faunas, probably atter dispersal over high-latitude land bridges (13, 14). Although the distribution and diversity of terrestrial plants are strongly influenead by climate

[^5]today, previous work has shown little mega- or palynofloral change across the Paleocenelineene interval (/5 79). Here we report terrestiall megaflonas from the PETM and use them to jufer change in the elinate and floral composition in the interior of North America.

Geological framework. Our data conc from the upper Font Union and lower Willwood formations in the Cabin Fork drainage, southeastem Bighom Basin, Wyoming, United States $\left(-43.96 \mathrm{~N} .107 .65^{\circ} \mathrm{W}\right)$ (fig. 1). These scdiments were deposited by small tluvial systems near the margit of a sulasiding intermontane basin, and they preserve a suite of environments ineluding small channels, floodplain paleosols and swamps, and abandoned channel fills. We measured strata with a Jacob's staff and sighting level, then conelated sections by tracing beds with a differential Global Positioning System to create a stratigraphic and biostratigraphic framework with $\sim 1-\mathrm{m}$ resolntion (Fig. 2).

Two lines of evidence estab)ish the PIVIM age of these stata: mammalian biostratignaphy and δ^{13} C of palcosol orgatic matter. Fossi] matnmals indicating the late Paleocene Clarkforkian Nouth Americarl Land Mammal Age (NALMA) were found from 5 to 22 m below the top of the Fort Union formation (H ig. 2). The main fossiliferous layer is a laterally extensive, femumous, gitpebble conglonicrate that has produced >200 specimens and 11 species. The presence of Copecion, an abundance of Phenotochus and Eitwaion, and the absenec of liffatoiterium indicate that this fauna belongs to the latest Clarkforkian zonc (f-3 (2), 27). The carliest liocene mammals (Wasatchiam NALMA, the Wa-0 zone), which oeenr within the Cll: in other
areas ($19,21-25$), come firm the lowest 37 m of the Willwood formation. Nineteen species are represented among 233 specimens, including diagnostic Wa-0 taxa (Affla jutfteri, Copectioft davisi, Hywacotherivm sandrae, and Diacoderis illeis) (25). The lowest Wa-() fossils come from paleosols and clay clast accumulations in sandstones 3 to 5 m above the base of the Willwood fomation and 8 m above the highest Clarkforkian mammals. The highest Wa-0 fossils occur 37 m above the base of the Willwood formation and 3 m below threc thick, laterally persistent, red paleosols. In the Cabin Fork area, the highest of these three persistent paleosols (at 47 m) produced 10 species of mammals, ineluding Ciardiolophus radinstive, which defines the suececding Wa-1 faunal zone (25) (Hig. 2). Thus, the Wa-0 fannal zone in the Cabin Fork area is at least 34 m thick and is bounded by Cf- 3 and Wa- 1 faunas.

We measured the carbon isotopic composition of bulk organic matter (\hat{b}^{13} ? ? from tmud-rock paleosols in the same sections (26) (Fig. 2A and fig. S1). δ^{13} (one ranged from 22 to 28.5 per mil (\% and, when grouped into PETM and non-Pl:TM samples based on faunal criteria. was strongly negatively conrelated with the weight pereent of organic carbon (wt \% Corg) which vanies fiom 3.6% to 0.05% (fige S1 and table S1). We pletted deviations of $\delta^{13} \mathrm{C}_{\text {one }}$ from the values expected based on wt \% $\mathrm{C}_{\text {une }}$ (26) (Fig. 2 A and fig. S 1). The cation isotope curve shows a shenp excursion of -3.3%, stantine 2 to 3 m below the lowest oceurrence of Wa-0 nanimals. The mannitude of the C'E is similan to that in soil organic matter at Polecat Bench in the nonthem Bighom Basin (27) (Fig. 2B). Our isotope anomaly values renain 2 to 3% below background values throughout the 50 m of section aloove the base of the CII, with the exception of a single more positive smmple at 5 m (Fig. 2A) that was poorly consolidated and contaminated with modem roots. The lowest Wa-1 manmmals oecur within the upper part of the C'E, as is seen at Polecat Bench (27) (Fig. 2B).

Fig. 1. The location of the Cabin Fork and Polecat Bench PETM sections. Solid dots indicate Paleocene and Eocene sites with plant types that are restricted to the PETM in northern Wyoming.

Fig. 2. Comparison of PETM records. (A) The Cabin Fork section, showing meter levels, formations, faunal zones, lithology, fossil sites, and $\delta^{13} \mathrm{C}_{\text {ore }}$ anomaly values (26). (B) The Polecat Bench section, showing $\delta^{13} C_{\text {ore' }}$ faunal zones, and meter levels (27). (C) $\delta^{13} \mathrm{C}$ of bulk carbonate at Ocean' Drilling Program (ODP) site 690B (in the Southem Ocean), with the time scale from

Farley and Eltgroth (3). Wa, Wasatchian; Cf, Clarkforkian; M, Meniscotherium Zone. Paleocene fossils are indicated with blue symbols, PETM with red, and post-PETM Eocene with green. Carbon isotope units are in \% Pee Dee belemnite. Dashed orange lines indicate correlations of carbon isotope curves. Dashed vertical lines are mean $\dot{\delta}^{13} \mathrm{C}$ vales for the latest Paleocene.

Floral composition and migration. Plant fossils were collected firm lenticular channel fills 3 to 5 m thick and $<50 \mathrm{~m}$ across. Because of small-scale downcutting and redeposition, plant fossils are slightly younger than overbank deposits at the same level; however, the continnons floodplain palcosols above the chamel fills are within the PETM, as indicated by vertchrate fossils andior $\delta^{19} C_{\text {urg }}$ atromaly values.

Two localitics, Swo410 and Swo307 (3 and .37 m above the base of the Cil:, respectively), produced a total of 398 plant megafossi] specimens [136 and 262, respectively (table S3)]. The lower locality has nine leaf morphospecies, including six dicots, onc palm, and one fem. The upper locality has 20 leaf morphospecics, including 17 dicots, one palm, and two fems. In composition, both Pl:TM megafloral localitics are dominated by morphospecies that have not been recognized it extensive eollections ($\sim 30,000$ specimens from >300 localities) from the late Palcocene and carly liocenc of the Bighom Basin (Fig. 3) (28).

Fig. 3. Change in floral composition analyzed with detrended correspondence analysis (DCA). Each bivariate plot was generated by DCA of a sites-by-species matrix of presence/absence data. Arrows indicate the temporal sequence. (A) Palynofloral analysis: Axis I, 11.5\% of variance; Axis II, 5\% of variance. (B) Megafloral analysis: Axis I, 3% of variance; Axis II, 2% of variance. Paleocene samples are indicated with blue diamonds, Eocene samples with green triangles, and PETM samples with red squares. PETM samples are compositionally distinct from both Paleocene and Eocene ones and from each other.

The lower flora is dominated by an undeseribed mimosoid legume leaflet and contains leaves similar to "Abtocapus" lessigiana
(Lesguereux) Knowlton, a taxon known fiom the Palcocenc and liocenc of the Denter Basin, Mississippi Embayment, and C'alifonia
(29), locations 650 to 1500 km to the south (Fig. 1 and fig. S2). The upper flora is codominated by an undescribed leaf of probable lauralcan affinity with a long drip tip, a typical Paleocene lauralean known as "Ficus" planicostima, and the common late Palcocenc early Eocene platamoid Macginitiea nobilis (fig. S 3).

Palynotloras extracted fiom the megatlonal sites also have unnusual floral composition conpared to latest Paleocene and post-PETM samples from the same region (Fig. 3A) ($/ 6, / 7$). Both palynotloras have common, stratignaphically long-ranging, wind-pollinated taxa (such as Cafyapollenifes, ilmipolletijes, and Alnipollenites), but the lower tlora also includes Brosipollis, a marker of the carly bocenc on the Gulf Coastal Plain (30, 31); Punctatoxpofies, an locenc index fossil in the Bighom Basin; and four taxa not previously recorded among $\sim 25,000$ grains identified fiom the late Paleocene and earliest Eocene in the Bighorn Basin (/7). The upper site contains ?Lanagiopoltis, cf. Tricolpites hions, and Playecafya swasticoider (three forms otherwise restricted to the Gulf Coastal Plain); Triporopollenites gramidatuc and Civadopiles scabratus (both otherwise found in the Powder River and Williston Basins to the cast): the Eocene index Platucava platycavoides; and four taxa previously unrecorded in the Bighom Basin including cf. Bombca ($30-33$). As in the Powder River Basith, P. platyedryoides, which migrated to North America from Europe, does not appar until the upper part of the PISM, suggesting it may have not have colonized middle latitudes until climate began to cool late in the event (19).

The taxa found in these PIEM floras are otherwise unknown from the northem Rocky Mountain region, and the four palynomorphs and one leaf type noted above document northward range extensions from the Gulf Coastal Plain and from Colorado (Fig. 1 and table S4). Pl:TM ocenrrences of these taxa 650 to 1500 km north of their Pa lonecte distributions roughly indicate the magnitude of range extension, although incomplete knowledge of Palcocenc distributions means these nay be overestimates. Palcogene gradients of temperature with latitude have been estimated at 0.4 to $1^{3} \mathrm{C}$ change in mean antnual temperature ($\mathrm{M} \wedge \mathrm{T}$) per degree of latitude (34, 35). A temperature inercase of 4 to $8^{\circ} \mathrm{C}$ during the PETM (36) should have shifted floral ranges 4 to 20 degrees of latitude (450 to 2200 km) to the north, which agrees with the range extensions we infer.

The combination of immigants fiom the south, cast, and livope, along with the persistence of matives, is consistent with speciesspecific, or "individnalistic," response to the PETM, as has been widely reported in late and postglacial floras (37). The presence of immigrants in the lowest PETM flora suggests
that plant range changes were geologically rapid (<10 ky from the base of the CII:). The absence of a distinctive PETM flora in earlier studics probably reflects inadcquate sampling $(17,19)$ or limited change in floral ranges on isolated land masses ($/ 8$). The appearance during the PETM of both intrat and intercontinental floral immigrants niorors the pattem seen in the fauna, which includes both intracontinental (Meniscotheriufm) and intercontinental (hyadenodontid creodont) miganats (/4, 27).

Paleoclimate. Leat mangin malysis (LVA) (38.39) of the 23 dicot leaf morphospecies from the two localitics yielded a MAT estimate of $19.8-3.1^{\circ} \mathrm{C}$ for the PETM [the crror is 1 SD , following Wilf (39)]. This is $4.9^{\circ} \mathrm{C}$ higher than the VAT $\left(15.7 \perp 2.4^{\circ} \mathrm{C}\right)$ cstimated from LMA of floras from the 250-ky interval immediately before the PETM in the same region and $1.6^{\circ} \mathrm{C}$ higher than the MAT ($18.2 \perp 2.3^{\circ} \mathrm{C}^{\prime}$) for the $400-\mathrm{ky}$ interval after the PIETM (40). Oxygen isotopie composition of biogenic apatite from the Bighorn Basin indicates even higher temperature during the PETM ($26^{\circ} \mathrm{C}$) (35). Modcrn riparian and wetland vegetation has a higher proportion of toothed species than terra firma forest, commonly resulting in 2.5 to $7^{\circ} \mathrm{C}$ underestimates of MAT (41, 42). All the fossil floras used to estimate MAl were deposited in fluvial backswamps or channel margits (-6); palcotemperature estimates are therefore likely to be unifomly low. IIowcuer, the $-5^{\circ} \mathrm{C}$ warming estimated from LMA is consistent with isotopic temperature cstinlates.

We used leaf area analysis (LAA) (43) to estimate mean annual precipitation (MAP) at 123 cm the standard entor of the regression is
$177 / 86 \mathrm{~cm}$) for the combined PITVM flora. A different regression denived from a modem data set with more dry sites (44) yielded an MAP estimate of 120 cm . The marked increase in leaf size from the lower to the nuper Pl:TM megatlora (figs. S2 and S3) led us to estimate M \wedge P scparately for cach sitc. By using the two regressions $(43,44)$ we estimate a MAP of 80
$114 / 56 \mathrm{~cm}$ and 41 cm for the lower flora. MAP estimates for the upper flora were $144206 \% 100 \mathrm{~cm}$ and 132 cm . Althongh the MAP estimate for the lower flora was derived from only six morphospecies, the two with the smallest leaves (namophyllmierophyll) are also the most abundant. indicating that small-leaved species were local dominants. MAP estimates for the late Palcoecne it southern Wyoming average 138 $\mathrm{cm}(45)$, suggesting that rainfall declined by $\sim 40 \%$ near the onset of the PIETM then recovered to nomal values by late in the event. A warm, wet climate late in the $\mathrm{Pl}: \mathrm{I} \mathrm{V}$ is consistent with the exceptionally thick paleosols preserved from the upper part of the event (Fig. 2) (46).

Previous studies of the PETV have yielded mixed cvidence for precipitation change. A higher abundance of terrestrial palynomorphs and entrophic dinoflagellates in nearshore marine sediments has been cited as evidenee of more runoff and higher precipitation (18,47), as has the greater magnitude of the CIt: in pedogenic carbonate nodules than in marine carbonates (48). In contast, the continental record of the Pl:lM in Spain suggests a persistently or seasonally dry climate (49), and a possible PliTM section in southem England has exceptional amounts of fossil chareoal (5/).

Withont wider gcographic coverage, we do not know if the short period of dry climate we infer at the onset of the PlelM is regional or global. However, even if it was confinced to the northern Rocky Mountain region, it could have had an important positive feedback on elimate by increasing the likelihood of buming in the extensive upper Paleocence peats and coals of the Powder River Basin (9).

Conclusion. The PliM provides an important analog to present-day anthropogenic global warning, because the two episodes are infened to have similar rates and magnitudes of earbon relcase and climate change (6). In this context, it is notable that terrestrial floras underwent rapid (within $\sim 10 \mathrm{ky}$). individualistic range change during the Pl:TM, ineluding both intra- and intercontinental migation. Plant range changes of similar seale may occur with anthropogenic climate change. Fossils revealing this dramatic, transient, floral response to PlilM warming eluded years of focused searching, suggesting that other such short-term shifts in floral composition remain to be uncovered from the "decp time" record of ceological change.

References and Notes

1. J. C. Zachos et al., Science 302, 1551 (2003).
2. U. Röhl, T. J. Bralower, R. D. Norris, G. Wefer, Geolagy 28, 927 (2000).
3. K. A. Farley, S. F. Eltgroth, Earth Planet. Sci. Lett. 208, 135 (2003).
4. F. M. Gradstein et al., A Geotogic Time Scate 2004 (Cambridge Univ. Press, Cambridge, 2004).
5. The PETM is also known as the Initial Eocene Thermal Maximum (IETM).
6. J. C. Zachos et al., Science 308, 1611 (2005).
7. G. R. Dickens. J. R. O'Neil D. K. Rea, R. M. Owen, Pafeoceanography 10, 965 (1995).
8. H. Svensen et at., Nature 429, 542 (2004).
9. A. C. Kurtz, L. R. Kump, M. A. Arthur, J. C. Zachos, A. Paytan, Paleoceanography 18, 1090 (2003).
10. E. Thomas, in Late Paleocene-Early Eocene Cfimatic and Biotic Events in the Marine and Terrestrial Reconds, M.-P. Aubry, W. A. Bergeren, S. Lucas, Eds. (Columbia Univ. Press, New York, 1998), pp. 214-243.
11. D. C. Kelly, Pateoceanography 17, 1071 (2002)
12. E. M. Crouch et af., Geofogy 29, 315 (2001).
13. W. C. Clyde, P. D. Gingerich, Geology 26, 1011 (1998).
14. G. J. Bowen et af., Science 295, 2062 (2002).
15. S. L. Wing in Late Pateocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, M.-P. Aubry, W. A. Bergepen, S. Lucas, Eds. (Columbia Univ, Press, New York 1998), pp. $380-400$.
16. G. J. Harrington, U. Mich. Pap. Paleontof. 33, 89 (2001).
17. S. L. Wing, G. J. Harrington, Pafeobiology 27, 539 (2001).
18. E. M. Grouch, H. Visscher, Geol. Soc. Am. Spec. Pap. 369, 333 (2003).
19. S. L. Wing, G. J. Harrington, G. J. Bowen, P. L. Koch, Geot. Soc. Am. Spec. Pap. 369, 425 (2003).
20. K. D. Rose, U. Mich. Pap. Paleontof. 26, 1 (1981).
21. P. D. Gingerich, U. Mich. Pap. Paleontol. 33, 37 (2001).
22. P. L. Koch, J. C. Zachos, D. L. Dettmann, Pafaeogeogr. Palaeoclimatol. Palaeoecol. 115, 61 (1995).
23. G. J. Bowen et al., U. Mich. Pap. Paleontol. 33, 73 (2001).
24. 5. G. Strait, U. Mich. Pap. Pateontot. 33, 127 (2001).
1. P. D. Gingerich, U. Mich. Pap. Pateontat. 28, 1 (1989).
2. Materials and methods are available as supporting material on Science Online.
3. R. Magioncalda, C. Dupuis, T. Smith, E. Steurbaut, P. D. Gingerich, Geofogy 32, 553 (2004).
4. 5. L. Wing J. Alroy, L. J. Hickey, Pataeogeogr. Palaeoclimatol. Palaeoecol. 115, 117 (1995).
1. R. W. Brown, U.S. Geof. Surv. Prof. Pap. 375, 1 (1962).
2. G. J. Harrington, Pafaios 16, 266 (2001)
3. G. J. Harrington, Geof. Soc. Am. Spec. Pap. 369, 381 (2003).
4. G. J. Harrington, S. J. Kemp, Palaeogeogr. Palaeoclimatol. Pafaeoecol. 167, 1 (2001).
5. G. J. Harrington, 5. J. Kemp, P. L. Koch, J. Geot. Soc. (London) 161, 173 (2004).
6. D. R. Greenwood, S. L. Wing Geofogy 23, 1044 (1995).
7. H. C. Fricke, S. L. Wing, Am. J. Sci. 304, 612 (2004).
8. H. C. Fricke, W. C. Clyde, J. R. O'Neil, P. D. Gingerich, Earth Planet. Sci. Lett. 160, 193 (1998)
9. 5. T. Jackson, J. T. Overpeck, Paleobiotogy 26 (suppl.), 194 (2000).
1. J. A. Wolfe, U.S. Geot. Surv. Prof. Pap. 1105, 1 (1979)
2. P. Wilf, Paleobiology 23, 373 (1997).
3. S. L. Wing, H. Bao, P. L Koch, in Warm Climates in Earth History, B. T. Huber, K. MacCleod, S. L. Wing, Eds. (Cambridge Univ. Press, Cambridge, 2000), Pp. 197-237.
4. R. J. Burnham, N. C. Pitman, K. R. Johnson, P. D. Wilf Am. f. Bot. 88, 1096 (2001).
5. E. A. Kowalski, D. L. Dilcher, Proc. Natf. Acad. Sci. U.S.A. 100, 167 (2003).
6. P. Wilf, S. L. Wing, D. R Greenwood, C. L Greenwood, Geotogy 26, 203 (1998).
7. B. F. Jacobs, P. S. Herendeen, Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 115 (2004).

Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake

Jian V. Zhang, Pei-Gen Ren, Orna Avsian-Kretchmer, Ching-Wei Luo, Rami Rauch, Cynthia Klein, Aaron J. W. Hsueh*

Abstract

Ghrelin, a circulating appetite-inducing hormone, is derived from a prohormone by posttranslational processing. On the basis of the bioinformatic prediction that another peptide also derived from proghrelin exists, we isolated a hormone from rat stomach and named it obestatir-a contraction of obese, from the Latin "obedere," meaning to devour, and "statin," denoting suppression. Contrary to the appetite-stimulating effects of ghrelin, treatment of rats with obestatin suppressed food intake, inhibited jejunal contraction, and decreased body-weight gain. Obestatin bound to the orphan G protein-coupled receptor GPR39. Thus, two peptide hormones with opposing action in weight regulation are derived from the same ghrelin gene. After differential modification, these hormones activate distinct receptors.

The increasing prevalence of obesity is a global problem. Body weight is regulated in part by peptide homones produced in the brain or gut or both (7). Barlicr studics on synthetic and peptidyl growth homme (GII) secretugozues (24) led to the identification of a specifie G protein-coupled receptor (GPCR), the GII secretagoguc receptor (GHSR) (5, 6), and subsequently to the discovery of its endogenous ligand, ghrelin (7), a gut-derived eirculating homone that stimulates food intake $(4,8)$.

Human ghrelin, a 28 amino acid peptide, is derived by posttranslational cleav-

Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA.
: To whom correspondence should be addressed: E-mail: aaron.hsueh@stanford.edu
age from a prepropeptide of 117 residues. On the basis of bioinformatic searches of putative homones derived from the prepropeptides of known peptide hormones, we identitied a ghelin-associated peptide. We searched GenBank for orthologs of the human ghrelin gene and compared preproghrelit sequenees from 11 mammalian species. In addition to the known ghrelin mature peptide, which immediatcly follows the signal peptide, we identified another conserved region that was flanked by potential convertase cleavage sites (fig. S1, underlined). This region encodes a putative 23-amino acid peptide, with a tlanking conserved glyeitic residne at the \therefore terminus, suggesting that it might be amidated (9). We named this ghrelin-associated peptide obestatin.
45. P. Wilf, Geot. Soc. Am. Bufl. 112, 292 (2000).
46. T. M. Bown, M. J. Kraus, Palaios 8,68 (1993).
47. E. M. Crouch et al., Pafaeogeogr. Palaeoctimatof. Pataeoecot. 194, 387 (2003).
48. G. J. Bowen, D. J. Beerling, P. L. Koch, J. C. Zachos, T. Quattlebaum, Nature 432, 495 (2004).
49. B. Schmitz, V. Pujalte, Geofogy 31, 689 (2003).
50. M. E. Collinson, J. J. Hooker, D. R. Gröcke, Geot. Soc. Am. Spec. Pap. 369,333 (2003).
51. We thank P. Wilf, R. Secord, and G. Bowen for comments and the Biological Complexity of the Paleo-cene-Eocene Boundary (BIOPE) group for discussion. Supported by NSF grant nos. EAR-0120727 and EAR0308902 , the Roland Brown Fund, and the Florida Museum of Natural History. This is publication no. 146 of the Smithsonian Evolution of Terrestrial Ecosystems Program

Supporting Online Material

www.sciencemag.g.g/cgi/content/full/310/5750/993/ DC1
Materials and Methods
Figs. S1 to S3
Tables $\$ 1$ to 54
References and Notes
5 July 2005; accepted 10 October 2005
10.1126/science. 1116913

Characterization of endogenous obestatin. To detect endogenous obestation, we prepared a synthetic obestatin peptide and perfomed radioimmumoassays on rat-tissue extracts with obestatin-spocific antibodics. As shown in Fig. 1A, the stomach extract displaced 1^{125}-obestatin binding to the obestatin antibodics. Obestatio-like activities from stomach extracts were purified Immunorcactive (ir) obestatin was eluted in a Sephadex G-50 gel permeation column (Amersham Bioscicnees, Piscataway, NJ) with estimated sizes of 2.6 and 1.5 kilodaltons ($\mathrm{k} \mid \mathrm{D}$). distinet from the clution position of mature ghnelin (Fig. IB). We subjected peak 1 (2.6 kD) fractions to ion-cxchange fast protein lisuid chromatography (FPLC'). A single peak of ir obestatin was cluted (Fig. 1C) and shown by mass spectrometry and Edman sequencing to contain a peptide with a molceular mass of 2516.3 (Fig. 1D) and with a seguence of FNAPFDVGIKLSGAQYQQIIG-XX (IO). C'mmbined with molecular-weight detemmination, the full sequence of the puitied pepticle was predicted to be FNAPFDVGIKLSGAQYQQHGRALNII_{2}, consistent with the obestatin sequence deduecd from rat ghrelin elDNA. In addition, mass spectrometric amalyses suggested that peak $2(1.5 \mathrm{k} \mid)$ represented the last 13 residues of amidated obestatin, indicating further processing.

To investigate differential secretion of ghrelin and obestatin in vivo, we fastad adnlt male rats for 48 hours before refeeding. Consistent with carlicr findings (//), fasting led to a major increase in serm ghrelin levels, whereas subsequent refecding for 2 hours by allowing animals free access to food or dinking water containitng dextrose decreased cireulating ghrelin (Fig. 1E). In contrast, serum levels of obestatin deternined by a madioimmunoassay were constinnt in the different treatment groups.

Fig. 1. Characterization of endogenous obestatin. (A) Competition of 1^{125}-obestatin binding to obestatin antibodies by tissue extracts. 1^{125}-obestatin was incubated with obestatin antibodies with or without different dilutions of tissue extracts and the obestatin standard pg. picograms of; B, bound; Bo, total bound. (B) Gel perme ation chromatography of obestatin in stomach extracts. Stomach tissues from 30 rats were extracted and eluted from a Sep-Pak C-18 column before they were loaded onto a Sephader G-50 column. The column was calibrated with blue dextran (v_{0}), cytochrome $c(c c)$, and potassium chromate (v). Peak 1, detected by obestatin antibodies, represents the putative obestatin peptide, and peak 2 represents an obestatin fragment. (C) Ion exchange FPLC analysis of peak 1 fractions monitored by the obestatin immunoassay. (D) Peptide mapping using mass spectrometry and the predicted amino acid sequence of rat obestatin. m, mass; z_{1} charge. (E) Serum levels of ghrelin and obestatin during fasting and refeeding. Adult male rats ($n-$ 5 animals per group) were fasted for 2 days. After fasting, some animals were

D

E

allowed access to food, dextrose solution, or water for 2 hours before the amount of serum hormone was determined using specific radioimmunoassays. Error bars are mean SEM.

Obestatin suppression of food intake and gastrointestinal functions. We next synthesized amidated human obestatit and tested its effect on food intake in adult male mice. Intraperitoncal injection of obestatin suppressed food intake in a timeand dose-dependent manner (tig. 2N). Intracerebroventricular treatment with obestatin also deercased food intake (Fig . 2B), similar to the anorexigenic effect of the synthetic melanocortin agonists MIII (1) In contrast, treatment with the nonamidated obestatin (NA-obestatin) was less effeetive. We also imvestigated the effect of obestatin, glarelin, or vehicle alone on body weight in adult male rats. Treatment with ghrelin (1 umol per kg body weight, three times daily) inereased body weight, whereas the same dose of obestatin suppressed body-weight gain (fig. 26). Serum leptin levels were not affected after treatment with either obestatitn or ghrelin (fig. S2), suggesting minimal modulation of body-fat content. Furthemmore, treatment with obestation led to a sustained suppression of gas-
tric enlptying activity (Fig. 2D). In witro. isometric force measurement demonstrated that obestatim treatment deereased the contractile activity of jejunum muscle strips and antagonized the stimulatory effect of ghrelin (Fig. 2E) (13). The observed inhibition of jejunal contraction may trigger an afferent vagus signal to induce a central saticty response. Unlike ghrelin, obestatin did not inerease GH secretion by cultured rat pituitary cells (fig. S3).

Obestatin is the cognate ligand for GPR39. Iixperiments with erude plasmamembratic preparation of rat jejunum revealed that I^{125}-obestatin bound to jejunal preparations with a high affinity (dissociation constant $K_{\mathrm{l}}=4 \mathrm{nM}$), and this binding was not competed by ghrelin, motilitn. neurotensin, or neuromedin U (fig. S4). Furthermore, NA-obestatin and truncated (des1-10)obestatin showed a lower binding affinity than did obestatim. [${ }^{125}$-obestatim also bound to the pituitary, stomach, ileum, and hypothalamus, but less so to other tissues (fig. S4).

We hypothesized that obestatin interacts with an orphan GPCR, and we tested obestatin binding to Chinese hamster ovary (CIIO) cells transfected with ~ 30 individual orphan receptor elonAs. [${ }^{125}$-obestatin interacted with high affinity ($K_{d}=1 \mathrm{nV}$) to the orphat receptor GPR39, which belongs to the glrelin receptor subfamily (Fig. 3A) (14, 15). [${ }^{125}$-obestatin binding to GPR39 was competed by obestatit but not by ghrelin or several other braingut homones including motilin, neurotensin, or neuromedin IJ (Fig. 3B). In addition, NA-obestatin and truncated (desl-10)obestatin had a lower affinity for GPR39 tham did obestatin. In CHO eclls owerexpressing GPR39, treatment with obestatin stimulated cyclic adenosine monophosphate ($\mathrm{c} \wedge \mathrm{MP}$) production, whereas tratment with glrelin or motilin was ineffective (Fig . 36). Consistent with the reported activation of the serum response element (SRL:) by constitutive active GPR 39 (14), homonal treatment of CIIO cells cotransfected with GPR39 and a SRL: promoterluciferase construct led to obestation but not

Research Articles

Fig. 2. Regulation of gastrointestinal functions by obestatin. (A) Suppression of cumulative food intake after intraperitoneal treatment with obestatin. NA-obestatin, and/or ghrelin. The upper panel shows treatment with different peptides at $1, \mu \mathrm{~mol}$ per kg body weight; the lower panel shows dose response at 5 hours after treatment. Mice injected with urocortin served as positive controls. (B) Suppression of cumulative food intake after intracerebroventricular injection of obestatin. Peptides were injected at 8 nmol per kg body weight. Mice injected with MTII served as positive controls. (C) Treatment with obestatin suppressed bodyweight gain. (D) Suppression of gastric emptying activity by obestatin. The upper panel shows treatment with different peptides at 1 !!mol per kg body weight; the lower panel shows doseresponse relationship at 2 hours after treatment. (E) Treatment with obestatin suppressed the contractile activity of jejunum musde strips and the stimulatory effect of ghrelin. Representative tracing (upper panel) and percentage of maximal responses (lower panel) are shown. Asterisks indicate $P<0.05$ versus controls (C). Differences between treatment groups were analyzed using analysis of variance and Student's t-test.
ghrelin or motilin signaling (Fig. 3D). Similar stinulation of cAMP prodnction and the SRE promoter by obestatin was found when GiPR39 was overexpressed in HL:K2931 eells (fig. S5). Although CIO cells expressing GIISR did not respond to treatment with obestatin or ghrelin, cotamsfection with a chimeric Gsq protein, which is capable of switching Gq-mediated signaling to Gs proteins (16), led to cAMP increases induced by ghrelin but not obestatin (rig. 3Ij). Likewise, cells expressing the Gsel protein and the motilit receptor responded to treatment with motilin but not obestatin (Fig. 3F). Crosslinking studies further demonstrated that I^{125}-obestatin bound to recombinant GPR39, forming a high molcenlar-wcight complex (tig. S6). Real-time reverse-transcription polymerase chain reaction ($\mathrm{RT}-\mathrm{PCR}$) analyses indicated that GPR 39 is expressed in the jejunum. duodenum, stomach, pituitary, ileum, liver, hypothalamus, and other tissues (fig. 3(i), consistent with obestatitn binding studies.

Discussion. Gihrelits is implicated in meal initiation and body-weight regulation. Chronic ghrelin administration increases

food intake and decreases energy expenditure, thus causing weight gain. It contrast to gherelin, which causes hyperphagia and obesity in rats ($/ 7$), obestatin appears to aet as an morexic hommone by decreasing food intake, gastric emptying activities, jejunal motility, and body-weight gain. Mutant mice with a deletion of the ghrelin gene did not show impaired growth or appetite (6,18), most likely because these animals lacked both orexigenic ghrelin and anorexic obestatin. Indeed, transgenic mice bearing the preproghrelin gene under the control of the chicken β-actin promoter prodneed high levels of inactive des-acyl ghrelin but exhibited lower body weights (19), most likely due to excessive obestatitn biosynthesis.

The discovery of amidated obestatin and its cognate receptor underscores the power of comparative genomic analyses in the postgenomic era. A peptide derived from the 66 (-terminal amino acids of proghrelin, named C^{\prime}-ghrelin, was detected in human cireulation, and its scrum levels were elevated in patients with heart failure (20). Nithough the antibodies used to de-
tect C -ghrelin overlap with obestatin by 13 residucs, the cxact chemical nature and function of the circulating C-ghrelin remain unclear.

Our finding that two peptide homones derived from the same proprotein act through distinct receptors and exert opposing physiological actions highlights the importance of posttranslational regulatory mechanisms. Thus, monitoring of gluelin transcript levels does not accurately retlect the secretion of these two polypeptides. After removal of the signal peptides from prepropeptides, convertases cleave prohormones at mono- or dibasie residnes (27). In processed peptides with a C-temninal glycinc, the residue is further amidated (9). Similar to the importance of posttanslational amidation for obestatin bioactivity. ghrelin also reguires acylation on its serine3 residuc for bioactivity (7).

Ghrelin binds to GIISR, which belongs to the sulogronp of type A GPCRs consisting of GPR 39 and receptors for ghelin and motilin (22). Our diseovery that obestatin is the cognate ligand for GPR39 suggests that GHSR and GPR39 could have cvolved from

a common ancestor but diverged in their functions, thus maintaining a delicate balance of body-weight regulation. This scenanio is similar to the divergent and sometimes opposing actions of two paralogrous corticotropinreleasing hormone reeeptors and their ligands in the regulation of adaptive stress responses (2.3 25).

In addition to roles in meal initiation, weight regulation, and gastrointestinal activity, ghrelin also regulates the pituitary hormone axis, carbohydrate metabolism. and various functions of the heart, kidney, panercas, adipose tissues, and gonads (26). Because ghrelin mRNA was found in almost all humat tissues analyzed (27), the identification of obestatin derived from the same gene product as ghrelin provides a basis for future elucidation of the differential posttranslational processing and modification of these two peptides. A better understanding of the roles of ghrelin and obestation in the intricate balance of energy homeostasis and body-weight control may be essential for the successful treatment of obesity.

References and Notes

. M. K. Badman, J. 5. Flier, Science 307, 1909 (2005).
2. C. Y. Bowers et af., Endocrinology 106, 663 (1980). 3. R. G. Smith et al., Endocr. Rev. 18, 621 (1997).
4. M. Kojima, K. Kangawa, Physiot. Rev. 85, 495 (2005).
5. A. D. Howard et al., Science 273, 974 (1996).
6. Y. Sun, S. Ahmed, R. G. Smith, Mol. Ceft. Biol. 23, 7973 (2003).
7. M. Kojima et 2f., Nature 402, 656 (1999).
8. M. Nakazato et at, Nature 409, 194 (Z001).
9. B. A. Eipper, S. L. Milgram, E. J. Husten, H. Y. Yun, R. E. Mains, Protein Sci. 2, 489 (1993).
10. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Clu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y , Tyr.
11. M. Tschop, D. L. Smiley, M. L. Heiman, Nature 407, 908 (2000).
12. W. Fan, B. A. Boston, R. A. Kesterson, V. J. Hruby, R. D. Cone, Nature 385, 165 (1997).
13. T. Edholm, F. Levin, P. M. Hellstrom, P. T. Schmidt, Regut. Pept. 121, 25 (2004).
14. B. Holst et al., J. Biol. Chem. 279, 53806 (2004)
15. K. K. McKee et at., Genomics 46, 426 (1997).
16. B. R. Conklin et al., Mol. Pharmacol. 50, 885 (1996).
17. A. M. Wren et at., Diabetes 50, 2540 (2001).
18. K. E. Wortley et at., Proc. Natt. Acad. Sci. U.S.A. 101, 8227 (2004).
19. H. Ariyasu et at., Endocrinology 146, 355 (2005).
20. C. Pemberton, P. Wimalasena, T. Yandle, S. Soule, M.

Fig. 3. Obestatin activates the orphan receptor GPR39. (A) High-affinity binding of ${ }^{125}$-obestatin to CHO cells overexpressing GPR39. Saturation and 5 catchard plots are shown. (B) Hormonal specificity of 1^{125}-obestatin binding to CPR39. Peptides listed were tested separately. (C) Obestatin, but not ghrelin or motilin, stimulated CAMP production. (D) Obestatin activation of the SREluciferase reporter. (E) Ghrelin, but not obestatin, stimulated EAMP production in cells transfected with GHSR and the chimeric Gsq protein. (F) Motilin, but not obestatin, stimulated cAMP production in cells transfected with the motilin receptor (MTR) and the chimeric Gsq protein. (G) Real-time RT-PCR analyses of GPR 39 transcript levels in diverse tissues. Data are the mean $=$ SEM of triplicates.

Richards, Biochern. Biophys. Res. Commun. 310, 567 (2003).
21. N. G. Seidah, M. Chretien, Brain Res. 848, 45 (1999) 22. R. G. Smith et af., Horm. Res. 51 (suppl. 3), 1 (1999) 23. T. M. Reyes et at., Proc. Natl. Acad. Sci. U.S.A. 98 , 2843 (2001).
24. S. Y. Hsu, A. J. Hsueh, Nat. Med. 7. 605 (2001)
25. K. Lewis et at., Proc. Natl. Acad. Sci. U.S.A. 98, 7570 (2001).
26. A. J. van der Lely, M. Tschop, M. L. Heiman, E. Ghigo Endocr. Rev. 25, 426 (2004).
27. S. Gnanapavan et af., J. Clin. Endocrinof. Metab. 87 2988 (2002).
28. We thank 5. Y. Hsu for bioinformatic consultation the Protein and Nucleic Acid facility at Stanford University for peptide sequencing; N. Shankley for hormone name suggestion; and B. Kobilka, M. Poo, and A. Payne for comments on the manuscript. This work was supported by Johnson \& Johnson Pharmaceutical Research and Development. Animal care was consistent with Stanford University guidelines. The GenBank accession number for human ghrelin is NP 057446.

Supporting Online Material

www-sciencemag.org/cgi/content/ful//310/5750/996/ DC1
Materials and Methods
Figs. S1 to S6
References

11 July 2005; accepted 11 October 2005
10.1126/science. 1117255

A Thiolate-Ligated Nonheme Oxoiron(IV) Complex Relevant to Cytochrome P450

Michael R. Bukowski, ${ }^{1 *}$ Kevin D. Koehntop, ${ }^{1} \dagger$ Audria Stubna, ${ }^{2}$ Wonwoo Nam, ${ }^{4}$ Lawrence Que Jr. ${ }^{1} \stackrel{+}{+}$

Abstract

Thiolate-ligated oxoiron(IV) centers are postulated to be the key oxidants in the catalytic cycles of oxygen-activating cytochrome P450 and related enzymes. Despite considerable synthetic efforts, chemists have not succeeded in preparing an appropriate model complex. Here we report the synthesis and spectroscopic characterization of $\left[\mathrm{Fe}^{\mathrm{IV}}(\mathrm{O})(\mathrm{TMCS})\right]^{-}$where TMCS is a pentadentate ligand that provides a square pyramidal $N_{4}(S R)_{\text {apical }}$ where $S R$ is thiolate, ligand environment about the iron center, which is similar to that of cytochrome P450. The rigidity of the ligand framework stabilizes the thiolate in an oxidizing environment. Reactivity studies suggest that thiolate coordination favors hydrogen-atom abstraction chemistry over oxygen-atom transfer pathways in the presence of reducing substrates.

Thiolate-ligated oxoiron(IV) centers are thought to be the key oxidants in the eatalytic cyeles of oxygen-activating iron enzymes, such as cytochrome P450 (P450) (1. 2), NO synt thase (NOS) (3), and isopenicillin N synthase (4). Because of the physiological importanec of the heme-containing P450 and NOS, many biophysical and computational studics have sought to elucidate the mature of the oxidizing species componnds I and II, which conespond, respectively, to intemnediates with formal iron-oxidation states two and one above the resting iron($\Pi 1)$ state $(2,3,5-7)$. Itowever, these studics have not yet provided conclusive
${ }^{1}$ Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455 , USA. ${ }^{2}$ Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA. ${ }^{3}$ Department of Chemistry, University of Wisconsin Eau Claire, Eau Claire, WI 54702, USA ${ }^{4}$ Department of Chemistry, Division of Nano Sciences, and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea.
: Present address: Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601, USA
\dagger Present address: The Scripps Research Institute, La Jolla, CA 92037, USA.
\ddagger To whom correspondence should be addressed. Email: halfenja@uwec.edu (J.A.H.); emunck@cmu.edu (E.M.); que@chem.umn.edu (L.Q.)
evidence for the presence of thiolate-ligated oxoiron(iv) species in the reaction cyeles. For over 30 years, small-molecule complexes synthesized as active-site models have advanoed our understanding of the P450 cycle (8,9); despite these efforts, the synthesis of an oxoiron(V) porphyin complex with a thiolate ligand has not yet been achicved.

A central question in these systems is how eysteinate coordination might influence the reactivity of the oxoiron(IV) unit. Because of the absente of a confining poeket of the protein, it is very difficult to lock a thiolate ligand into a geometry that affords adequate stability in an oxidizing environment, because the sulfur eenter is generally at least as susceptible as the iron center to oxidative attack. Reeently, $\left[\mathrm{Fe}^{11}(\mathrm{TMCS})\right]\left(\mathrm{PF}_{6}\right)$ (Schenc 1, complex 1) (where TVC'S is a monoanion of 1 -mereaptocthyl-4.8,11-trinicthyl- $1,4.8,11$ tetrata cyclotetradecane), a nonheme iron complex with a square pyramidal $\mathrm{N}_{4}(\mathrm{SR})_{\text {apital }}$ ligand set, was synthesized in one of our laboratorics as a model for the iron(II) active site of superoxide raductase (1/)). We reasoned that this framework may be sufficiently nigid to support the coordination of the pendant thiolate to the iron center trans to an oxo group. The synthesis of such a complex (2)

Scheme 1.
is reported here. Vorcover, an analogous complex, 3, in which the pendant mercaptoethyl group is replaced by methyl, forms a stable oxoiron(IV) complex that has been characterized erystallographically (//). Complex 3 functions as an ideal control fiom which to infer the precise impact of thiolate coorditation on the structure and reactivity of the oxoiron(IV) unit in 2.

The reaction of 1 with 3 to 5 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ at $60{ }^{\circ} \mathrm{C}$, in methanol clicits the fomation of a deep blue complex 2, with

Fig. 1. Electronic spectral changes in the conversion of 1.04 mM 1 (dashed line) to 2 (solid line) in methanol at $-40^{\circ} \mathrm{C}$ by the addition of one equivalent m CPBA in the presence of 6 equivalents of potassium tert-butoxide.

Fig. 2. Mössbauer spectra of a frozen methanol solution of 2 recorded at temperatures and applied fields indicated. Spectral simulations are based on Eq. 1 using the parameters listed in Table 1. Spectra were simulated in the slow (at 4.2 K) and fast (for $\mathrm{T}>30 \mathrm{~K}$) spin fluctuation limit. The applied field was directed parallel to the observed γ-radiation. The doublet drawn above the topmost experimental spectrum (0 T , 4 K) represents a 7% contribution from a residual amount of 1 in the sample of \mathbf{Z}.
intense visible absorption features at 460 and 570 nm and weaker near-infrared (IR) bands at 850 and 1050 mm (Fig. 1). Although this species is quite stable at 600° ?, it decays at higher temperature with all four bands deercasing at the same rate. The features in the near-IR region resemble those observed for reecntly identified nonhence oxoiron(IV) complexes (11-13), including 3, which correspond to d-d transitions of an $S-1$ metal center (where S is the spin guantum number) (14). Initial Mossbaner studies confirned the fomation of an iron(IV) complex (see below),
but with only 40% yield. IIowever, in subseçuent experiments, $\mathbf{2}$ conld be gencrated with greater tham 90% yield by using one equivalent of m-chloroperbenzoic acid ($m \mathrm{CPBA}$) as oxidant in the presence of excess base. IIighresolution clectrospray mass spectral studics of 2 revealed only one prominent ion at a mass/charge (miz) ratio of 373.1724 , with a mass value that conesponds exactly with its formulation as [$\mathrm{Fc}(\mathrm{O} \text {)(} \mathrm{TMCS} \text {) }]^{+}$(fig. S 1).

Figure 2 shows Mössbauer specta of ${ }^{57}$ Fe-enriched complex 2 recorded at 4.2 . 35, and 100 K in applied magnetic fields as

Table 1. Experimental (exp) and calculated (calcd) parameters for 2 and 3. Numbers in parentheses indicate the error in the last significant digit nd, no data; η, asymmetry parameter of the electric field gradient (EFG) tensor; r, bond distance.

Complex	$\left.\begin{array}{c} D \\ \left(\mathrm{~cm}^{1}\right. \end{array}\right)$	E/D	$\begin{gathered} \left(A_{x} A_{y} A_{(T)}\right) / g_{N} \beta_{N} \\ \left.{ }_{N}\right) \end{gathered}$	$\underset{(\mathrm{mm} / \mathrm{s})}{\Delta E_{\mathrm{Q}}}$	7	$\begin{gathered} \delta \\ (\mathrm{mm} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \left.\mathrm{r}_{\mathrm{Fe}=\mathrm{O}}^{\mathrm{A}}\right) \\ \hline \end{gathered}$	$\begin{gathered} r_{\mathrm{Fe-N}} \\ (\mathrm{~A}) \end{gathered}$	${ }^{\prime} \mathrm{Fe}$ - S (A)	
2 (exp)	35(3)	0	-23(2), -22(2) $-5(2)$	-0.22(2) \dagger	- 0	0.19(1)	1.70.	2.091	2.33.	
2 (calcd)	36	nd	-23.3*, -22.2*, -4.8*	-0.37 \dagger	0.61	0.20	1.68	2.13	2.39	
3 (exp)	28	0	-25, -20, -3	1.23	0.5	0.17	$1.646 \$$	2.09§§	-	
3 (calcd)\\|	27	nd	-20.5, -20.1, -4.3	1.25	0.1	0.175	1.64	2.10	-	

*Sum of the calculated spin-dipolar contribution (traceless) and the experimental value for the isotropic contribution, $A_{\text {in }} / g_{N} \beta_{N}--16.8 \mathrm{~T}_{i} A_{\mathrm{s}}-\left(\begin{array}{lll}A_{x} & A_{y} & A_{7}\end{array}\right] / 3$. *The ZFS and A tensor are essentially axial, with z within 8 degrees along the $\mathrm{Fe}-\mathrm{O}$ axis according to DFT calculations (Z2). The experimental EFG tensor is axial, with the major component anywhere in the $x y$ plane, which is roughly the plane defined by the four N ligands; $\Delta E_{Q}<0$. We have quoted ΔE_{0} and n in the conventional way, i.e, in a coordinate system for which $0<\eta<1$. The major component of the calculated EFG is also in the xy plane. ©This work, from EXAFS analysis (table 51). *See (TI). \|schöneboom et at. (26) have recently reported similar values for 3 .

Fig. 3. r^{\prime}-space and k space (inset) EXAFS data for 2 obtained in frozen methanol solution. Experimental data (dotted line) and fits to the data (solid line) are shown. Fourier transform (FT) range (k): 2 to $15.07 \AA \AA^{1}(0.12 \AA$ resolution). Back-transformation range $\left(r^{\prime}\right): 0.77$ to $3.18 \AA$. See table S 1 for a summary of the fitting protocol. Best fit shown consists of 10 at $1.70(2) \mathrm{A}, 3 \mathrm{~N} / \mathrm{O}$
 at $2.09(2) \AA, 1 \mathrm{~S}$ at $2.33(2) \AA$, and 4 C at $2.95(2) \AA$.

Fig. 4. Geometry optimized structure of 2 based on DFT calculations (22). Black, carbon; red, oxygen; yellow, sulfur; purple, iron; and blue, nitrogen.

indicated. In zero field, 2 exhibits a doublet (accoutting for -93% of the total Fc) with Guadrupole splitting $\Delta E_{0}=0.22 \mathrm{~mm} / \mathrm{s}$ and isomer shift $\delta-0.19 \mathrm{nim} / \mathrm{s}$ (relative to Fic metal at 298 K). The remainder of the iron gives rise to a doublet that is attributable to starting material $\mathbf{1}\left(\Delta E_{Q}=3.0 \mathrm{~mm}\right.$ s and $\delta=$ $0.90 \mathrm{~mm} / \mathrm{s} \mathrm{s}$. The applied field spectra show that 2 is an integer spin paramagnet, with parameters similar to those of $3(1)$. The δ value of $\mathbf{2}$ is only slightly larger than that of 3 ($\delta-0.17 \mathrm{mmis}$). Thus, although the δ value supports the assigment of 2 as an iron(T) complex, it cannot be used to establish thiolate coordination to the $S-1$ $\mathrm{Fe}^{\mathrm{V}}=\mathrm{O}$ state. 「In contrast, thiolate ligation strongly affects δ it the high-spit iron(II) state (I5).7 IIowever, the effect of thiolate binding to the oxoiron(IV) center is manifested in the much smaller ΔE_{Q} of 2 relative to that of 3 .

The spectra of Fig. 2, together with data obtained at different temperatures and applied fields, were simulated with the $S=1$ spin Hamiltontian

$$
\begin{align*}
I f-D\left(S_{2}^{2}-2 / 3\right) & \mid N\left(S_{\mathrm{z}}^{2}-S_{\mathrm{y}}^{2}\right) । \\
2 \beta \mathbf{B} \mathbf{S} & \text { SA•I }-g_{\mathrm{N}} \beta \cdot \mathbf{B} \mathbf{I} \mid H \mathrm{O} \tag{1}
\end{align*}
$$

where H_{Q} describes the quadrupole interactions, D and E represent the zero-ficld splitting (ZFS) parameters, \mathbf{A} is the magnetic hypertine tensor. I is the nuelear spin operator, \mathbf{B} is the magnetic field, β is the Bohr mayneton, and $g_{N} f_{2}$ - is the muelear gyronagnetic ratio. For the simulations, we kept all tensors in the same prineipal axis frame. These values are summarized in Table 1 and are compared with those reported previously for 3 .

X-ray absorption spectroscopy experiments offered further insight into the structure of 2. This complex gives rise to a shalp pre-edge feature with an area of $18(2)$ arbitrary units (AU), where the number in parentheses indicates the uncertainty in the last significant digit (16). This feature arises from $1 \mathrm{~s}-\mathrm{to}-3 \mathrm{~d}$ transitions, the intensities of which reflect deviations of the metal center from centrosymmetry (17). Other $S=1$ oxoiron(IV) complexes have been found to show similarly intense preedge features, with areas ranging from 24 to 32 AU (18). The smaller value associated with 2 relative to that of $\mathbf{3}(30 \mathrm{AU})$ presumably reflects differences in bonding that may be attributed to the stronger σ and π donating properties of the thiolate group in $\mathbf{2}$ relative to the more π-acidic NCCH_{3} ligand in 3 .

The extended x -ray absorption fine structure (EXAFS) data for 2 can be fit well with the following scatterers: 10 at $1.70(2) \AA, 3 \mathrm{~N} / \mathrm{O}$ at $2.09(2) \AA, 1 \mathrm{~S}$ at $2.33(2) \AA$, and 4 C at $2.95(2) \AA$ (Fig. 3 and table S 1), revealing an iron center with both an oxo and a thiolate ligand.

Coordination of the axial thiolate lengthens the $\mathrm{Fe}-\mathrm{O}$ bond slightly in 2 relative to that found in the crystallographically characterized 3. but it docs not affect the average Fic N distance (Table 1). The Fe-S distance found in 2 is intermediate between that of its precursor complex $1[2.297(3) \dot{A}](10)$ and that determined by IEXAFS for chloroperoxidase compound $[$ (2.37 A) (19), but is significantly shorter that the fe S bonds computed for cytochrome P450 compounds I (2.6 A) and II (2.5 A) $(20,2 /)$. The shorter Fic S bond observed for 2 may reflect the higher effective charge of the iron center because of its uncharged cquatorial N_{1} ligand sct. Complex 2 has $\mathrm{Fe}=\mathrm{O}$ and $\mathrm{Fe}-\mathrm{S}$ bond lengths that closely match those of a putative P 450 intermediate produced by cryophotoreduction of oxyP 450 erystals, as deduced from its 1.9λ resolution crystal structure (5).

To gain further jnsight into the clectronic structure of 2 , we performed density functional theory (DFT^{\prime}) calculations (22). In the lowest-energy calculated structure (Fig. 4 and Table 1), the lengthening of the $\mathrm{Fe}-\mathrm{O}$ bond to $1.68 \dot{A}$, relative to that in 3, is in excellent agrecment with the IXXAFS analysis. The π-basic thiolate ligand donates electron density to the iron(lV) ecnter and competes with the oxo group for the metal d_{-}orbitals, thereby weakening the $\mathrm{Fe}-\mathrm{O}$ bond. In contrast, the π-acidic MeC'N ligand in 3 has a backbonding interaction with the iron(V) center that strengthens the $\mathrm{Fe}=\mathrm{O}$ bond. The very large 7ero-ficld splitting ($/ \mathrm{HSS}$) of 2 results predominantly firm spin-orbit mixing between the $S-1$ ground state and a very low lying $S=2$ manifold (22) at lower energy $(=2000$ em^{1}) than in $3\left(\div 3000 \mathrm{~cm}^{1}\right)$, facilitating a stronger interaction.

The introduction of the thiolate ligand not only affects the electronic properties of the oxoiron(IV) unit but also has a dramatic effect on its reactivity. At $-40^{\circ} \mathrm{C}$, both 2 and 3 have extended lifetinnes of days for 2 in McOH and weeks for $\mathbf{3}$ in MeCN (1). Complex 3 reacts readily with PPh_{3} by oxo-atom transfer to form OPPh_{3} and regenerate its iron(II) precursor (//), but it is incrt toward dihydroanthracene, a hydrocarbon that typically undergoes facile hydrogen-atom abstraction. In contrast, 2 docs not react at all with PPh_{3} but reacts with even one equivalent of dihydroanthracenc in under an hour. For the latter reaction, 2 undergoes a one-electron reduction to a red species (maximum wavelength $\lambda_{\text {ack }}=514 \mathrm{~mm}$; molar absonptivity $\varepsilon=1400$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$) (fig. S2) that cxhibits a prominent electrospray ionization mass spectroscopy (LSI-MS) ion at miz - 388.1944, corrcsponding to $\lceil\text { Fe(TMCS) }(\mathrm{OMe})\rceil^{-}$. We postulate that 2 docays by abstracting a hydrogen atom from dihydroantlracene to form $[\mathrm{FcIII}(\mathrm{TMCS})(\mathrm{OH})]$, which readily corverts to $\left\lceil\mathrm{Fe}^{\prime \prime \prime}(\mathrm{TMC'S})(\mathrm{OMe})\right\rceil^{+}$in MeOII.

Thus, the introduction of the axial thiolate converts the $\mathrm{Fe}^{\mathrm{V}}-\mathrm{O}$ unnit from being an oxoatom transfer agent (two-electron oxidant) into a hydrogen-atom abstraction agent (one-electron oxidant). This switching effect of the axial thiolate on the reactivity of the oxoiron(IV) unit is much more dramatic than was previously reported for other axial ligand substitutions on the $\left[\mathrm{Fe}^{\mathrm{rv}^{2}}(\mathrm{O})(\mathrm{TMC})\right]$ framework (23, 24), as well as for those associated with oxoiron(Γ V) porphyrin cation radical complexes (25). Understanding this switch will reguire further experimental and computational work. IIowever the unusual effect of the thiolate ligand may provide a compelling rationale for mature's use of the $\mathrm{O}=\mathrm{Fe}^{\text {l/ }}-\mathrm{SR}$ motif in key metabolic transformations that involve the activation of strong C-II bonds.

References and Notes

1. B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 104, 3947 (2004)
2. I. G. Denisov, T. M. Makris, S. G. Sligar, I. Schlichting Chem. Rev. 105, 2253 (2005).
3. D. J. Stuehr, Biochim. Biophys. Acta 1411, 217 (1999)
4. M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Chem Rev. 104, 939 (2004).
5. I. Schlichting et al., Science 287, 1615 (2000).
6. R. Davydov et at. J. Am. Chem. Soc. 123, 1403 (2001)
7. S. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, Chem. Rev. 105, 2279 (2005).
8. J. T. Groves, in Cytochrome P450: Structure, Mechanism, and Biochemistry, P. R. Ortiz de Montellano, Ed. (Kluwer Academic/Plenum Publishers, New York, 2005), pp. 1-43.
9. F. Tani, M. Matsu-ura, 5. Nakayama, Y. Naruta Coord. Chem. Rev, 226, 219 (2002).
10. A. T. Fiedler, H. L. Halfen, J. A. Halfen, T. C. Brunold, f. Am. Chem. Soc. 127, 1675 (2005).
11. J-U. Rohde et al., Science 299, 1037 (2003).
12. M. H. Lim et al., Proc. Nati. Acad. Sci. U.S.A. 100, 3665 (2003).
13. J. Kaizer et af., f. Am. Chern. Sor. 126, 472 (2004).
14. A. Decker, J.-U. Rohde, L. Que Jr., E. I. Solomon, J. Am. Chem. Soc. 126, 5378 (2004).
15. P. G. Debrunner, in fron Porphyrins, B. Lever, H. B. Gray, Eds. (VCH, New York 1989), vol. IIII, pp. 137-234.
16. The pre-edge area is a background-ratioed absopition and thus reported in arbitrary units. See (18) for further details and comparison.
17. T. E. Westre et al., J. Am. Chem. Soc. 119, 6297 (1997).
18. J.-U. Rohde et al., J. Am. Chem. Soc. 126, 16750 (2004).
19. M. T. Green, J. H. Dawson, H. B. Gray, Science 304, 1653 (2004).
20. J. C. Schöneboom et at., f. Am. Chem. Soc. 124, 8142 (2002).
21. F. Ogliaro, S. P. de Visser, S. Shaik, J. Inorg. Biochem. 91, 554 (2002).
22. Materials and methods are available as supporting material on Science Online.
23. J.-U. Rohde, L. Que Jr., Angew. Chern. Int. Ed. 44, 2255 (2005).
24. C. V. Sastri et al., J. Am. Chem. Soc. 127, 12494 (2005).
25. W. Nam et al., Angew. Chem. int. Ed. 39, 3646 (2000).
26. J. C. Schöneboom, F. Neese, W. Thiel, J. Am. Chem. Soc. 127, 5840 (2005).
27. This work was supported by NIH grants GM-33162 to L.Q., EB-001475 to E.M., and a predoctoral traineeship to K.D.K. under training grant T32 GM08700, by NSF grant CHE-0243951 to J.A.H. and graduate research fellowship to A.S.; and by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program to W.N. J.A.H. acknowledges the support of NSF/Research Site for Educators in Chemistry grant CHE-0113894 during his sabbatical at the University of Minnesota. X-ray absorption spectroscopy data were collected on beam line 7-3 at the Stanford Synchrotron Radiation Laboratory, which is supported by the U.S. Department of Energy and the NIH Research Resource program.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1119092/DC1
Materials and Methods
Figs. S1 and S2
Tables S1 to S4
References

19 August 2005; accepted 11 October 2005 Published online 27 October 2005;
10.1126/science. 1119092

Include this information when citing this paper.

Direct Visualization of the Formation of Single-Molecule Conjugated Copolymers

Hiroshi Sakaguchi, ${ }^{1,2 *}$ Hisashi Matsumura, ${ }^{1}$ Hui Gong, ${ }^{1}$ Abdelkarim M. Abouelwafa ${ }^{1}$

Abstract

Electrochemical polymerization of two different kinds of thiophene monomers on an iodine-covered gold surface created highly assembled conjugated copolymers with different electronic structures. A scanning tunneling microscope revealed images of several linkage types: diblock, triblock, and multiblock. The single strand of conjugated copolymers exhibited an anomalous swinging motion on the surface. This technique presents the possibility of understanding the copolymerization process from the different monomers on the single-molecular scale and of building single-molecule superlattices on a surface through controlled electropolymerization.

Conjugated copolymers (1,2), which combine different kinds of nolecules with π-clectron networks, have useful conductivity properties that can be exploited in deviees such as field effect trantsistors (3). IIowever, the limited solubility of these
materials has obscured details of the polymerization process. For cxample, does polymerization proceed in blocks or is it random? Visualization of conjugated copolymers on the singlemolecular scale can address these questions.

Manipulated reactions (induced by a scanning probe microscope tip) on surfaces have been demonstrated, such as one-dimensional chain polymerization of diacetylene into polydiacetylene (4), the coupling reaction of iodobenzene into the biphenyl (5), K atom doping into C_{60} molecules (σ), and the connection of two different dendronized polymers by ultraviolet light irradiation (7). Applications of the electrochemical technique to solutions containing different kinds of monomers or mixed solutions provide a new approach for the production of single-molecule heterowires on surfaces.

Heterojunctions of synthetic conjugated copolymers (8) and synthetic conjugated oligomers (9,10) have been imaged, but clear visualization of the connection of different single-molecule wires is difficult unless the polymers are highly ordered on the surfaces. Here, we used electrochemical epitaxial polymerization (ECEP) to synthesize conjugated copolymers on surfaces so that polymerization could be imaged on the single-molecular scale.

Conjugated polymers can be assembled on a metal surface by means of ECEP with control of the molecule's length, density, and propagation direction (11). In this technique, voltage pulses are applied to monomers in an electrolyte solution on an iodine-covered gold substrate [T-An(111)] (12). Two steps arc crucial: (i) nucleus fommation, in which the oligomers produced in solution adsorb on the I-Au(111), and (ii) stepwise polymerization such that the nonomer's cation radicals react with the nueleus to fom wires that propagate along the surface's iodinc-atom lattice. The iodinc-covered sufface adts as an adhesive that binds the polythiophene wires. Two kinds of polythiophenes were used as components for creating heterowires and were characterized independently with seanning tunneling microscopy (STM) (12). All STM images were taken at a tip bias of 0.2 V with a constant current of 5 pA . Two kinds of thiophene mononers were used as building blocks to ercate heterowires (Fig. 1, B and E): 3-octyloxy-4-methylthiophenc (C 80 MT) (13) and 3-octyl-4-methylthiophene (C8MT) (14). Cyclic voltamnogran ($/ 2$) shows that the oxygen atom that is directly bonded to the thiophene moicty in C8OMl affords a lower oxidation potential by 0.4 V relative to C8MT (fig. Sl).

Application of the Cl IP technique at a given condition to the C8OMT monomer (Fig. 1A) produced linear polythiophene arrays on the l-An(11l) with a maximum length of 100 nm and a height of 3.0 to $3.5 A$, as measured with STM (Hig. 1, B to D). The CSVTT-polymer

[^6]

Fig. 1. (A) Experimental set-up of ECEP to produce the monopolymer wires, showing working (WE), reference (RE), and counter electrodes (CE). (B and C) STM images of C8OMT-polymer wires made by applying 35 pulses ($1.2 \mathrm{~V}, 150 \mathrm{~ms}$) to the $\mathrm{I}-\mathrm{Au}(111)$ substrate in the C80MT (10 mM)$\mathrm{NBu}_{4} \mathrm{PF}_{6}(0.1 \mathrm{M})$ dichloromethane $50 l u t i o n$. The inset depicts the C8OMT chemical structure. (D) Cross section of line shown in (C). (E and F) STM images of C8MT-polymer wires made by applying 150 pulses ($1.4 \mathrm{~V}, 150 \mathrm{~ms}$) to the l-Auf(111) substrate in the C8MT (10 mM)-NBu ${ }_{4} \mathrm{PF}_{5}$ $(0.1 \mathrm{M}$) solution. (G) Cross section of the line shown in (F). (H) Two-dimensional FFT image of (F) (inset) and its cross section. (I) Proposed structure of C8MT polymer on the surface. Yellow circles correspond to center of dots shown in the STM images.
wires were also produed at different bliP conditions with a maximum leneth of 50 nm and a height of 1.5 to 2.0λ (tig. $1,1 \%$ to (i). It marked contrast to the C8OMT-polymer wires, the CeMil-polymer wires appeared in SIM images as a connection of tiny dots, which were spaced at 11.5λ (Fig. 1 , 15 to G). We observed that isolated single polymers of C8OMT and C8MT in the low density region and those with lengths shorter than $10 \mathrm{~mm}(1)$ moved easily on I-Au(111) surface. The dots observed at C'8VT polyners were not disconnected, even though the polymers moved on the surface. These results strongly suggest that the dot strueture is due not to the self-assembled C8MT monomers or its oligomers but to the single-polymer strand Because of the asymmetric reactivity of the monomer, 3-alkoxy-4-methylthiophenes such as C8OMT are reported to provide the regioregular head-to-tail polythiophenes (13, 15). The same reasom might be applicable to the C'8VT because of the asymmetrical chenical structure.

These results suggest that the electronic structures of the two kinds of polythiophene differ greatly. The optical absomption spectrum of the chemically synthesized polyners of C8MT in solution showed a lighest oc-
enpied molecular orbital (HOMO) lowest unt occupied molecular orbital (LUNO) Eap of 3.76 cV , whereas that of C8OMT showed a Eap of 2.94 eV (fig. S2). These data are in a good agreement with the reported spectrum of each polymer (13,14,16). Such a large HOMO-LIJMO gap of C8MI polymer has been ascribed to thiophene-ring torsion (17-19) in the main polymer chain. resulting in "short conjugation" of π electrons.

Thiophene ring torsion is the most probable reason that features in the STM image of C8MT-polymer wires appear in the shape of connceted dots with nodes (Fig . 1, I and F). The $11.5 \dot{A}$ spacing of dots (Fig. 1G) observed from the STM image of C8MI-polymer wires agrees well with the threefold 3.8 A spacing ($/ 1,2022$) of interthiophene units in polythiophenes (Fig. 1, F and G). Two-dimensional Fast fourice Transform (HFT^{\prime}) of tig. 1 F represents the line pattems perpendicular to the direction of polymer chain, which provide an accurate periodicity of dots (inset of Fig. III). The fr゙l cross-sectional peak at $0.85 \mathrm{~mm}^{-1}$ shows the periodicity to be $11.73 \dot{\mathrm{~A}}$ (Fig. III). This value suggests that torsion might have a periodicity of three thiophene units (Fig. 1I). It

REPORTS

Fig. 2. (A) Experimental setup of multistep ECEP to produce heterowires. (B and C) STM image of $1-A u(111)$ after application of multistep ECEP. Multistep ECEP consists of the first voltage-pulse application ($1.4 \mathrm{~V}, 150 \mathrm{~ms}$, 120 pulses) to a C8MT $(10 \mathrm{mM})-\mathrm{NBu}_{4} \mathrm{PF}_{6}$ $(0.1 \mathrm{M})$ solution and the second application ($1.1 \mathrm{~V}, 150 \mathrm{~ms}, 10$ pulses) to a C8OMT $(10 \mathrm{mM})-\mathrm{NBu}_{4} \mathrm{PF}_{6}$ (0.1 M) solution. (D to I) Temporal STM images of I-Au(111) after application of multistep ECEP with the same conditions as (B) and (C), acquired every 2 min . Circles show heterojunctions.

has been reported that the STM height is affected by a barrier height and a transconductance of molecules $(23,24)$. Observed STM images reflect the electronic structure of the polymer coupled with the geometry. The bright dots in the chains that were visible in STM images probably correspond to the electronic orbitals on planar thiophene rings with high conjugation of π electrons, whereas the nodes (dark regions) should appear as those on distorted thiophene-rings with low conjugation (Fig. 1I). Although the alkyl chains of polymers cannot be imaged because of the high barrier height of $\mathrm{C}-\mathrm{C}$ bonds, the conjugated chain-to-chain distances of 1.66 nm on average (Fig. 1F) suggest that the alkyl chains of C8MT polymer might interdigitate with the adjacent polymer's alkyl chains. Thus, the torsion model can explain the structures shaped as connected dots in STM images of C8MT-polymer wires.

It has been reported that the distortion of the thiophene ring in quarterthiophenc is affected by the medium (crystal or solvent) as well as the intrinsic propertics of molecules (25). Therefore, we studied the substrate effect to explain why the periodicity of the dot-shaped stuncture is highly regular. The structure of C8MT polymers fabricated on An(111) was compared with that on I-Au(111). An STM image of C'8MT polymers on $\lambda u(l 11)$ showed randonly oricnted wires with no apparent periodic dot-shaped structure (fig. S3A) The C8OVT polymers on An(111), as a reference, represent a rodike structure

Fig. 3. (A to C) Dynamic STM images of I-Au(111) after application of multistep ECEP, acquired every 2 min . Condition of multistep ECEP are identical to those in Fig. 2. (D) Experimental setup of mixed-solution ECEP method to produce multiblock heterowires. (E) STM image of I-Au(111) after application of mixed-solution ECEP. Mixed-solution ECEP consists of the voltage-pulse application (1.4 V, $150 \mathrm{~ms}, 100$ pulses) to a C8MT $(10 \mathrm{mM})-\mathrm{C} 80 \mathrm{MT}(1 \mathrm{mM})-\mathrm{NBu}_{1} \mathrm{PF} \mathrm{F}_{6}(0.1 \mathrm{M})$ solution.
similar to that on I-Au(111) (fig. S3B). Thus, these results suggest that the highly regular periodic structure of C8VT polymers might be influeneed on the surface. The interaction between the C8VT polymer and the iodine atoms plays a emeial role in forming the periodic structure.

We propose a multistep ECEP technique (12) to create single-molecule heterowires (fig. 2A). This technique comprises two electropolymerization prowesses in a different monomer solution. In the finst process, the voltage pulses to oxidize the mononer were applied to the $1-\lambda u(111)$ in the electrolyte solution containing the C'8MT mono-

Fig. 4. (A) STS curves located on (1) the C3MT-wire part of a heterowire and (2) the C8OMT-wire part. Initial tunneling current was 10 pA . Insets show the STM image with blue dots where the STS measurements were performed and the experimental illustration. (B) STS curves of C8MT-polymer wires as a function of initial tunneling current of 5 and 10 pA . (C) $5 T 5$ curves of C8OMT-polymer wires as a function of initial tunneling current of 5,10,20, and 50 pA . Insets show the STM image of sample and the experimental illustration. (D) (1) Differential conductance (d//dV) of C8MT-polymer wires (B) from the initial tunneling current of 10 PA and (2) those for C8OMT-polymer wires (C) from the initial tunneling current of 50 pA .
mer. This process produces the C8MT-polymer wires on the substrate. The substrate is then transterred to an electrolyte solution containings C8OMT, and a second process of voltage application oxidizes both the C'SOMT in solution and the CRMI polymer on the substrate. The second process might create heterowires in which the CRMI polymers on the substrate link with propudating C8OMT polymers. The STM images for the sample obtainod by multistep ICliP depict two independently grown wires in some regions (tig. 2B). From differences in their shape and height, the observed wires are easily classifiable into two types of polymer blocks. However, other regions showed heterowires with a C8OMT polymer and a CBMl polymer joined together at the ends of respective chains (Fig. 2C').

Sequential S'M inages show that the heterojunction is czeated by chemical bonding between the C8OMT-polymer and C8MT-polymer wires. Dynamic STM images taken every 2 min (Fig. 2, D to I) revealed that the C8VTT-polymer part swings firm the point at heterojunction fcircles shown in Fig. 2, D to D, whereas the C8OMTpolymer part is tightly fixed on the surface. If the two wires are not covalently bonded but merely contacted, the C8MT-polymer wire would separate firm the C8OMT polymer at the heterojunction. However, the two wirce never separated at the heterojunction. These results indicate the evidence of a covalent bond at the heterojunction. Increasing the imangig tumeling current fiom 5
to 10 pA did not affect the swinging motion of heterowires. Thercfore, the swinging motion might not be caused by the tip manipulation but by the thernal-activated polymer diffiusion on the suface.

There might be two reasons for the polymer diffusion on the sufface. One reason is the binding forec of the different polymers with the surface: The C8OMT-polymer wires bind to the $[-A u(111)$ more strongly than do the C8MI wires. Periodic torsion of thiophene nings of C8VT polymer might reduec the interaction with I-Au (111), whereas the coplanar thiophene rings of C8OMT polymers tightly interact with I-Au(111). The second reasom is a sumounding effect: the interehain interaction with neighbor polymers. The C8MT-polymer pant of heterowire (tig. 2, D) to [) is alnost isolated from the C'8ONT-polymer aray because of its bending chain. This situation makes the CSMT-polymer part move easily on the surface because it has no interaction with the C8OMT-polymer anay. Once the C8VT-polymer chains on surface have aligned parallel to the adjacent chains of C'8ONT or C'8MT polymers, these had a tendency to stabilize (some wires in Fig. 2, B and C). [tteraction between the alkyl chain of the polymer and the interdigitated one plays an important role in the stability of the polymer on the surface ($1 I$). Different binding forces of two polymers night originate from an interaction between the polymer wires and the I-Au(111).

In some cases, we observed not only diblock wires but also triblock wires (Fig. 3, A to C). These STM images show a triblock structure in which a C8MT-polymer wire is sandwiched between two C8OMT wires. These images also represent the motion of the C8MT-polymer part linked with the short C8OMT polymer, for which the long C8OMT-polymer part adsorbs strongly on the surface. The short length of the isolated wire might be the reason for the motion of the C8MT-polymer part linked with the short C8OMT polymer. When ECEP was used with a mixed solution containing C8OMT and C8MT (Fig. 3D), multiblock heterowires were still produced rather than random copolymers (Fig. 3E). Although the multiblock structures were sometimes visible by a multistep ECEP (Fig. 2 C shows some junctions), the mixed-solution method produced these structures efficiently, because such structures frequently appeared in many different locations. These results indicate that the polymerization process of conjugated copolymer in the mixed solution is not random but block polymerization, and that monomers react preferentially with each other rather than with different monomers.

The electronic structure of heterowires was investigated with scaming tumeling spectroscopy (STS) (12). The curtent-voltage (IV) curves of heterowires fiom an initial tumeling current of $10 \mathrm{p} \wedge$ are depicted in tig. 4λ. The C8MT-polymer parts of heterowires show a larger HOMO-LlMO gap than those at C8OMT-polymer pants. Observed STS datal show almost symmetrical IV curves in the present bias range. Reported STS of oligothiophene also shows symmetrical IV curves (?6). Typical IV curves of C8VT and C8OVTT polymers (Fig. 4, B and C, respectively) show that changing the initial tumeling current regulates the tip-sample distance. The differential conductance ($(1 F / d V$) of Fig. 4 B (C 8 VT polymer) from the initial tuntreling current of 10 pA and that of Fig. 4C (C8OMT polymer) from 50 p A arc plotted in tig. 4D. Nthough the curtent in the $I V$ curves sometimes fluctuated becanse of the measurement conditions. the shapes of curve were reproducible. The IV eurves of C8MT polymers (Fig. 4B) and C8OMT polymers (Fig. 4C) were the same as those for the CRMI-polymer blocks and the C8OMT-polymer blocks of the heterowires, respectively. Thus, the electronie propertics of the heterowires of each polymer are the same as those of the wires of each homopolymer. The HOMO-LUMO gap of the CRMT polymer is determiticd to be nearly 1 cV from tig. 4, B and D. The IV eurves of the C8OMT polymer (Fig. 4C') are the same as those of $1-\lambda \mathrm{n}(111)$ (fig. S4). Thus, the observed IIOMO-LUMO yaps of the C8MT polymer as well as the C8OMI polymer on $\mathrm{I}-\mathrm{Al}(111)$ are substantially lower than those in the soIntion. There are two possible reasons for these results. Mixing of density of states (DOS) of
the substrate surface (27) with DOS of polymors could occur, or there conld be charge transter (28) based on the interaction between the polymers and the $[-\mathrm{Au}(111)$. These electronic interactions between the polymers and the surface might reduec the HOMO-LUMO gaps compared with those in solution.

References and Notes

. A. K. Bakhshi, Deepika, f. Mof. Struct. 499, 105 (2000) 2. T. lyoda et at., J. Phys. Chem. 95, 5215 (1991)
3. H. Sirringhaus et af., Appl. Phys. Lett. 77, 406 (2000) 4. Y. Okawa, M. Aono, Nature 409, 683 (2001).
5. S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder, Phys Rev. Lett. 85, 2777 (2000).
6. R. Yamachika, M. Grobis, A. Wachowiak, M. F. Crommie, Scjence 304, 281 (2004)
7. J. Barner, F. Mallwitz, L Shu, A. D. Schlüter, J. P. Rabe Angew. Chem. 115, 1976 (2003).
8. M. Brun et at., Adv. Mater. 16, 2087 (2004).
9. M.-K. Ng, L Yu, Angew. Chern. 114, 3750 (2002).
10. M-K Ns D-C Lee, L Yu, Am Chern Soc 124 11862 (2002)
11. H. Sakaguchi, H. Matsumura, H. Gong, Nat. Mater. 3, 551 (2004).
12. Materials and methods are available as supporting material on Science Online
13. G. Daoust, M. Leclerc, Macromofecufer 24, 455 (1991)
14. M. Leclerc, G. Daoust, f. Chem. Soc. Chem. Commun. 1990, 273 (1990)
15. R. D. McCullough, Adv. Mater. 10, 93 (1998).
16. T. Johansson, W. Mammo, M. Svensson, M. R. Anderson, O. Inहुп̈̆s, f. Mater. Chern. 13, 1316 (2003).
17. G. Gigli et at., Appt. Phys. Lett. 73, 2414 (1998).
18. C. Roux, M. Leclerc, Macromolecufes 25, 2141 (1992).
19. M. Leclerc, Adv. Mater. 11, 1491 (1999).
20. E. Mena-Osteritz et af., Angew. Chern. Int. Ed. 39, 2680 (2000).

1. B. Grevin, P. Rannou, R. Payerne, A. Pron, J. P. Travers Adv. Mater. 15, 881 (2003).
2. B. Grévin, P. Rannou, R. Payerne, A. Pron, J. P. Travers f. Chern. Phys. 118, 7097 (2003)
3. L. A. Burnm et af., Scjence 271, 1705 (1996)
4. L. A Bumm, I Arnold T. D. Dunbar D. L. Allara, P. S. Weiss, J. Phys. Chem. 8 103, 8122 (1999).
5. G. Barbarella, M. Zambianchi, A. Bongini, L. Antolini, Adv. Mater. 4, 282 (1992).
6. A. Gesquière et al., Nano Letr. 1, 201 (2001).
7. M. Grobis, A. Wachowiak, R. Yamachika, M. F. Crommie, Appl. Phys. Lett. 86, 204102 (2005).
8. M. Akaï-Kasaya et al., Phys. Rev. Lett. 91, 255501 (2003)
9. This work was supported financially by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan, the Japan Society for the Promotion of Science (JSPS), and the Asahi Glass Foundation.

Supporting Online Material

WWw.sciencemag.org/cgi/content/full/310/5750/1002/ DC1
Materials and Methods
Figs. 51 to 54
References
26 July 2005; accepted 19 October 2005
$10.1126 /$ science. 1117990

Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman

Philipp Kukura, David W. McCamant,* Sangwoon Yoon, Daniel B. Wandschneider, Richard A. Mathies ${ }^{\text { }}$

Abstract

The primary event that initiates vision is the light-induced 11-cis to all-trans isomerization of retinal in the visual pigment rhodopsin. Despite decades of study with the traditional tools of chemical reaction dynamics, both the timing and nature of the atomic motions that lead to photoproduct production remain unknown. We used femtosecond-stimulated Raman spectroscopy to obtain time-resolved vibrational spectra of the molecular structures formed along the reaction coordinate. The spectral evolution of the vibrational features from 200 femtoseconds to 1 picosecond after photon absorption reveals the temporal sequencing of the geometric changes in the retinal backbone that activate this receptor.

Understanding the medhanism of a chemical reaction reguires measuing the structure of the reactant as it evolves into product. Many of the most intriguing and efficient photochemical and photobiological reactions take place on ultrafast time scales and their kinetics have been well characterized by femtosccond absorption and fluorescence spectroscopies ($1-5$). Although x-ray diffiaction is being developed for timeresolved structural studies of reactions, this approach is challenging to apply in the condensed phase and currently limited to processes slower than $-100 \mathrm{ps}(6)$. Whtrafast vibrational spectroscopy is advantageous in this guest because it offers both excellent temporal and structural information (7). The traditional picosecond timeresolution linitation (8) is being transeended

[^7]through the use of femtosecond pulses in the infrared (IR) in multidimensional as well as direet time-resolved experiments of ultrafist chemical and biological processes ($9-H$). The complementany Raman vibational techniques have also advanced with the recent development of stimulated Raman in the ferntosecond time domain (12,13), which is valuable because of its ability to interrogate biological proeesses in agueous media. IIere, we demonstrate the capabilitics of femtosccond-stimulated Raman spectroscopy (FSRS) in studies of reation dynamics by clucidating the nolecular mechanism of the primary photochemical events in vision.

In FSRS, two laser pulses dive the Raman tramsition: a picosecond "Raman pulse" and a femtosecond broadband continuum "probe pulse" that stimulates the scattering of any vibrational modes with frequencies between 600 and 2000 $\mathrm{cm}{ }^{1}$. The use of the additional probe pulse to induce the Raman scattering offers a number of notable improvements over traditional timeresolved spontancous Raman spectroseopy (/4), such as greatly enhanced cross sections and
atl order-of-magnitude improvement it time resolution (<100 fs) while maintaining excellent energy resolution $\left(<15 \mathrm{~cm}^{-1}\right)(15,76)$. The impulsive creation of vibrational coherence by the Ramat and probe pulses reveals highly time-resolved vibrational structural information that is not accessible by iteoherent proeesses such as spontaneous Raman.

The primary step in vision is the photochemical cis-trans isomerization of the 11-cis retinal chromophore in thodopsin (tig. 1A). Production of the primary gromad-state transient called photorhodopsitn is one of the fastest photochemical reactions in mature and is complete in only $200 \mathrm{fs}(17)$. As a consequenee, the reaction is extremely efficient, with a quantum yield of 0.65 , and about 60% of the ineident photon energy is stored in the first themodynamically stable all-trans retinal photoproduct called bathorhodopsin. This stored energy is then used to drive activating conformational changes in the G protein-coupled receptor that eventually lead to visual sensation. Although a number of theoretical models have been proposed (18-20) to explain thodopsinns unique reactive properties, which are responsible for making it an excellent light receptor many of the most critical guestions about its photochemistry remain unanswered For instance, the coordinates mediating fast excited-state decay, the role of the electronic excited state it the isomerization. the structure of retinal in photorhodopsin, and the nature of the reaction coordinate leading to bathorhodopsin are undefined.

We address these questions by acquiring femtosecond time-resolved vibrational spectra of retinal in rhodopsin throughont the reaction. Modeling of the vibrational structural features after rapid internal eonversion to the ground state reveals the highly distorted structure of photorhodopsin. Surprisingly, a large fraction of the atomic rearrangement leading to the formation of fully isomenzed bathorhodopsitn is shown to occur in the ground electronic state. Vivid details of this
structural evolution are revealed by the changing frequencies and lineshapes of key vibrational modes during the reaction.

FSRS spectra of rhodopsin after cxcitation with a 30 -fs photochemical pump pulse centered at 500 nm are presented in tig. 1B (27). The reference vibrational spectrum of rhodopsin (bottom) includes the symmetric C.-C. ethylenic stretch at $1548 \mathrm{~cm}^{-1}$, the fingerprint region from 11000 to $1300 \mathrm{~cm}{ }^{1}$ due to strueturally sensitive $C-C^{-}$single-bond stretching and C-II rocking modes, and a feature at $969 \mathrm{~cm}{ }^{1}$ duc to concerted hydrogen-out-of-plane (IIOOP) wagging motion of the 11 and 12 hydrogens (22). The bathorhodopsin reference spectrum at the top of Fig. 1B illustrates the isomerizationinduecd changes in the intensity and froquency pattem in the fingerpaint region as well as the HOOP region; the original mode at $969 \mathrm{~cm} 1^{-1}$ is red slifted and split into three separate peaks at 920,875 , and $850 \mathrm{~cm}^{-1}$, assignod to isolated $\mathrm{C}_{11}-\mathrm{II}, \mathrm{C}_{10}-\mathrm{II}$, and $\mathrm{C}_{12}-\mathrm{II}$ wagging modes, respectively (22).

The fingerprint pattern of photorhodopsin at 200 fs appears to be midway between those of 11 -cis rhodopsin and all-trans bathonhodopsin. The features evolve itto the bathorhodopsin spectrum over the next 800 fs . In particular, the peak at $1267 \mathrm{~cm}^{-1}$ decereases in intensity, whereas the bands at 1216 and $1237 \mathrm{~cm}^{1}$ remain virtually unchanged. Surprisingly, we observed very intense, dispersive lineshapes in the HOOP region between 800 and $950 \mathrm{~cm}^{-1}$ at early times. The dispersive IIOOP features cvolve on the same time scale as the fingerprint bands into the expected three positive features of the bathorhodopsin spectrum. By 1 ps, vibational cooling has nanowed and blue shifted all features, including the ethylenic stretching band, thereby completing the tiansformation to bathorhodopsin. These data show that there is considerable reactive evolution on the ground-state surface from 200 fs to 1 ps .

The dispersive lineshapes in the IIOOP region at carly time delays originate from our capability to monitor structural evolution on the time seale of the reaction in a coherent fashion. This observation can be understood by considering how stimulated Raman signals are gencrated (/3). The simultancous action of picoscoond Raman and femtosccond continumm probe pulses drives vibrational coherence in the sample (Fig. 2A). The gating of this process relative to the photochemical purnp is temporally well detined by the short ($\sim 20-\mathrm{fs}$) probe pulse. The subsequent coherent vibration of the molecules modulates the macroscopic sample polarjzation in the time domain, thereby giving rise to positive definite Stokes and anti-Stokes features in the energy donain. Because we detected these features through interference with the unscattered probe, the signal appears on top of the probe envelope. IIowever, if the freguency of this coherent motion initiated by Raman and probe pulses changes during the vibrational
dephasing time as shown in Fig. 2B, where the oscillator is chirped from low to high fraquency. then the resulting lineslapes become dispersive. The specifie jineshape in fig. 2B, with a negative feature on the high-energy side, is distinctive of a shift from a low- to a high-frequency vibration during the free-induction decay of the vibrational oseillator (2f). Thus, the dispersive HOOP modes directly report on the dynamic structural relaxation of retinal as it cvolves from the highenergy photorhodopsin transient to the groundstate bathorhodopsin product. The hetcrodyne detection scheme in FSRS is powerful in that it makes possible the observation of vibrational phase and froquency shifts that oceur on a time scale shorter than the vibrational dephasing time.

We have simulated the spectral cvolution of the IIOOP features atter internal conversion to the ground state using theory cncompassing the above concepts (21). The frequencies of three

Fig. 1. (A) The primary event in vision: 11-cis retinal in rhodopsin is isomerized upon photon (hv) absorption to the all-trans bathorhodopsin photoproduct. (B) Time-resolved femtosecondstimulated Raman spectra of rhodopsin from 200 fs to 1 p5. The spectra are vertically offset and ground state and solvent features as well as a broad sloping baseline have been subtracted (21). Resonance Raman spectra of ground-state rhodopsin (Rho) and the trapped bathorhodopsin (Batho) product are included for comparison. The dashed line in the 200-fs plot indicates the spectral baseline.

Fig. 2. (A) Picosecond Raman and femtosecond probe pulses drive vibrational coherence in the sample. Heterodyne detection yields a gain feature on top of the probe envelope in the energy domain shifted in energy relative to the Raman pulse according to the frequency of the vibration. Division (Div.) of spectra in the presence of the Raman pulse by spectra in its absence results in Lorentzian vibrational features. (B) An increase in the vibrational frequency during the vibrational dephasing time gives rise to dispersive lineshapes due to phase-sensitive heterodyne detection of the stimulated Raman signal. FT, Fourier transform. (C) Time-resolved stimulated Raman spectra of the HOOP region of reactive rhodopsin from 200 fs to 2 ps. (D) Simulated spectra of the HOOP region obtained from a four-mode model using three timedependent frequencies, as in (B). (E) The simulations reveal a $-100 \mathrm{~cm}^{-1}$ blue shift of the $\mathrm{C}_{10}-\mathrm{H}(\square), \mathrm{C}_{11}-\mathrm{H}(0)$, and $\mathrm{C}_{12}-\mathrm{H}(\Delta)$ frequencies from 200 fs to 2 ps with a ~ 325-fs time constant.
modes resulting from isolated $\mathrm{C}_{10}-\mathrm{IL}, \mathrm{C}_{11}-$ II, and $\mathrm{C}_{12} \mathrm{H}$ wagging motion werc variced exponentially, and a fouth resulting from vibrationally excited but unreactive ground-state species was held constant at $959 \mathrm{~cm}^{-1}$. This simple model is remarkably successful at reproducing the observed spectral dynamics in Fig. 2C'. Not only do the simulated spectra duplicate the injtially highly dispersive lineshapes, but they also reprodruec the temporal cwolution of these bands into the traditional bathorihodopsin features (Fig. 2D). The model also yiclds transicnt vibrational fiequencies of structures along the pathway from ploterihodopsin to bathomodopsin. The IIOOP frequencies inercase by $-10\left(\mathrm{~cm}^{-1}\right.$ from 200 fs to 2 ps with a ~ 325-fs time constint (Fig. 2E). Notably, all spectra were simulated with a single set of parameters that are not adjusted to tit the individnal time points. The validity of our model is reinforced by the quantitative agreement between experinent and theory in light of the highly constrained parameters used in the simulations.

The evolation of the vibrational structure fiom 200 fs to 1 ps demonstrates that a large fraction of the net notion along the isomerization coordinate occurs on the gromad-state sur-

Fig. 3. (A to C) Retinal chromophore structures for reactant modopsin (28) and for photorhodopsin and bathorhodopsin that reproduce the observed hydrogen wagging frequencies. Backbone dihedral twist angles from the thodopsin reactant are indicated. (D) Comparison of density functional theory (24) calculated (Theo.) and experimental (Exp.) hydrogen wagging frequencies for the photo and bathorhodopsin structures.
face. The most marked spectalal change on this tine scale oecus in the HOOP region where a $\sim 100-\mathrm{cm}^{-1}$ blue shift occurs with a $\sim 325-\mathrm{fs}$ time constant We recently used vibrational noodeling to demonstate a close relationship between the degrec of distortion of the polyenc backbone and the anomalously low $\mathrm{C}_{12}-$ II wageng frequency in bathorhodopsin (23). Specifically, the firquencies of the $\mathrm{C}_{11}-\mathrm{II}$ and C_{12}-II wayging modes in bathorhodopsin were explained by, at a minimum, the concurence of some-sense 40° twists about the $\mathrm{C}_{11}-\mathrm{C}_{12}$ and $\mathrm{C}_{12} \mathrm{C}_{13}$ bonds. This previous work suggests that the reduced IIOOP frequencies in photomoodopsin are due to even greater distortions of the polyene backbone. The large IIOOP frequency increases in the photo-to-batho transition arc also physically reasomable because the restoring force for out-of-plane hydrogen wagging motion should increase as the double bonds strengthen in the more planar bathorhodopsin product state.

To test this explanation, we extended the approach of Yan et al. (23) by using density functional theory (24) to calculate the Raman frequencies for intermediate retinal structures that describe the photo-to-batho transition. Struetures with calculated wagging froquerwics that were in good agreement with the experimental results are presented in Fig. 3. The bathorhodopsin structure is twisted by -144° about the $\mathrm{C}_{11}=\mathrm{C}_{12}$ and by 31° about the

Fig. 4. Multidimensional representation of the isomerization coordinate for the primary event in vision. Absorption of a visible photon is followed by rapid motion out of the Franck-Condon region along high-frequency HOOP coordinates (vibrational period $\sim 36 \mathrm{fs}$) which carry the system toward a conical intersection in ~ 50 fs. Curve crossing to the ground state to form highly distorted photorhodopsin is complete by $\sim 200 \mathrm{fs}$. The structural evolution of retinal on the groundstate surface along the $C_{11}-C_{12}$ torsional as well as other coordinates produces all-trans bathorhodopsin in ~ 1 ps. Also shown is the energy level diagram for coherent femtosecond-stimulated Raman probing of the ground-state molecular dynamics where (1) is a femtosecond photochemical purmp pulse, (2) is a narrow bandwidth Raman pulse, and (3) is a broadband femtosecond probe.
$\mathrm{C}_{12}-\mathrm{C}_{13}^{\prime}$ bond, consistent with our earlier results, which only considered the position of the $C_{12} \mathrm{H}$ wag. Fitting all the wag frequency reductions requires additional twists about adjacent bonds. Bathorhodopsin exhibits intense lines in the Raman spoctrum at 850.875 , and $920 \mathrm{~cm}^{1}$ assigned to isolated $\mathrm{C}_{12}-\mathrm{II}, \mathrm{C}_{10}-\mathrm{II}$, and $\mathrm{C}_{11}-\mathrm{II}$ wagging modes, respectively. Vibrational calculations for the bathorhodopsin structure in Fig. 3C. yiclded features at 849, 857, and 881 cm^{-1} in excellent ayprement with experimental data, except for an underestimated $C_{11} H$ wagging frequency. The photorhodopsin structure is more highly distorted, in particular about the $\mathrm{C}_{13}-\mathrm{C}_{10}\left(45^{\circ}\right), \mathrm{C}_{10} \mathrm{C}_{11}\left(25^{\circ}\right)$ and $\mathrm{C}_{11}-\mathrm{C}_{12}$ $\left(-110^{\circ}\right.$) bonds. With these larger twists, the overall shape of retinal is much more like that of 11-cis thodopsin than all-tadas bathorhodopsin, despite having a formally isomerizod (110) $\mathrm{C}_{11}=\mathrm{C}_{12}$ bond. Transient frequencies of the isolated $\mathrm{C}_{10} \mathrm{H}, \mathrm{C}_{11} \mathrm{H}$ and $\mathrm{C}_{12} \mathrm{H}$ wagging modes obtained fiom the analysis of the 200 -fs FSRS spectrum appear at 772,811 , and 762 $\mathrm{cm}{ }^{1}$, respectively. Calculated frequencies for these modes with the use of the proposed photorhodopsin structure (Fig. 3B) show good agrecment with cxperimental data for the $\mathrm{C}_{10} \mathrm{H}$ and C_{11}-II modes (814 and $844 \mathrm{~cm}^{1}$, respectively), although the $\mathrm{C}_{12}-\mathrm{H}$ frequency is overestimated ($853 \mathrm{~cm}^{-1}$). An alternative, but overall similar structure was found in which the $\mathrm{C}_{10}-\mathrm{H}$ and $\mathrm{C}_{12}-\mathrm{H}$ frequencies were calculated to drop by $\sim 70 \mathrm{~cm}^{-1}$ (835 and $798 \mathrm{~cm}^{-1}$, respectively) with an overestimated $\mathrm{C}_{11}-\mathrm{H}$ frequency. In general, structures featuring only very specific combinations of backbone twists exhibited large frequency decreases compared with the bathorhodopsin structure.

Although future work certainly requires more detailed calculations that include protein interactions to provide more quantitative modeling of vibrational and energetic data, these results show that large-scale backbone distortions are capable of causing marked frequency drops in all the hydrogen wagging modes. The changes in vibrational structure observed by FSRS are thus best attributed to the dynamic ground-state relaxation of the initially highly twisted photorhodopsin structure as it evolves into bathorhodopsin.

Taken together, the data and modeling presented here are consistent with the following overall picture of the light-induced retinal isomerization that initiates vision (Fig. 4): The reaction begins with rapid excited-state decay after Franck-Condon excitation. Because optical excitation is strongly allowed, the transition from the A_{g} ground electronic state must populate an excited state having ungerade symmetry. Thus, any numelear distortion that efficiently conples the Franck-Condon state to the ground state resulting in fast excited-state decay must be nontotally symmetic, such as the A_{2} IIOOP or backbone torsions. Critically the isomerization can also only oceur alone nontotally symmetic coor-
dinates. The extremely short lifetime of the excited state $(\sim 50 \mathrm{fs})$, as estalalished by transient absorption (17), resonance Ramam intensity analysis (25), and spontancons fluorescence measurements (26), however, severely restricts the cxtent of atomic displacements that ean ocenr on this time scale. Given the energy available to the chromophore, the maximum $\mathrm{C}_{11}-\mathrm{C}_{12}$ dihedral angle that can be adoleved in 50 fs is $\sim 50^{\circ}$, even if restrictions from the protein pocket are ignored (25, 27). This suggests that the role of $\mathrm{C}_{11}-\mathrm{C}_{12}$ torsional motion during the excitedstate lifetime is limited. The similanity of the vibrational period of the $969 \mathrm{~cm}^{1} \mathrm{C}_{11} \mathrm{II}=\mathrm{C}_{12} \mathrm{II}$ $\mathrm{HOOP}(\sim 36$ fs) to the excited-state lifetinne ($\sim 50 \mathrm{fs}$) supports its role in facilitating intemal conversion. Additionally, resonance Raman intensity analysis shows quantitatively that retinal undergoes rapid distortion along the $\mathrm{C}_{11} \mathrm{H}-\mathrm{C}_{12} \mathrm{H}$ IIOOP coordinate after optical excitation as a consequence of the lowered overall symmetry of the molecule when bound to rhodopsin (25). We thus conclude that excited-state decay through a conical intersection is mediated liargely by fast HOOP motion.

Evolution along the $\mathrm{C}_{11}=\mathrm{C}_{12}$ torsional coordinate after internal conversion leads to the formation of photorhodopsin with a formally isomerizad >90) $\mathrm{C}_{11}-\mathrm{C}_{12}$ bond but an overall highly distorted structure. Adjacent single- and double-bond twists compensate for the local cis-trans isomerization resulting in an overall reactant-like shape that, althongh isomerized about the $\mathrm{C}_{11}=\mathrm{C}_{12}$ bond, minimizes steric interactions with the protein poeket thereby enabling the fast reaction rate (compare Fig. 3, A and Bj . The nolecule then uses the ~ 5000 cm^{-1} of energy available from rapid bamierless internal conversion as well as the $-3000 \mathrm{~cm}^{1}$ from the photo-to-batho relasation to drive the larger seale structural changes nocessary to form the all-trams bathorhodopsin photoproduct in ~ 1 ps (Fig. 3C). Thus, although the isomerization is initiated in the excited state and photomodopsin is formally trans about the $\mathrm{C}_{11}-\mathrm{C}_{12}$ bond, much of the geometric changes associated with the isomerization actually oecur on the ground potential sufface in the photo-to-batho transition. This result is a direct consequenee of the different time seales for complete excitedstate decay $(-200 \mathrm{fs})$ and bathorhodopsin formation (-1 ps) determined in this work.

This multidimensional model for modopsin isomerization, including a fast "gating" coordinate (IIOOP), deviates substantially from the one-dimensional picture commonly used to describe photoisomenization reactions, where both electronic and nuelear dynamice oceur along the same, slow torsional coordinate. Furthemore, these obscrvations make it possible to better understand the role of the protein in determining thodopsin's unique reactivity. The tight binding pocket intluences the reaction path in three ways: (i) It primes the molecule for rapid exeited-state decay along the IIOOP coordinate by pretwisting
the retinal backbone, (ii) it restricts the possible motion of the excited chromophore through steric interactions with sunounding amino acids, thereby promoting reaction spoed and resulting in a high isomerization quantum yiek, and (iii) it captures the high-encrgy bathorhodopsin product and efficiently tramsfers this energy into protein conformational changes that activate the reecptor. We anticipate that these concepts will be important in understanding matry cfficient photobiological reactions.

References and Notes

1. C. V. Shank, Science 233,1276 (1986)
2. A. H. Zewail, Femtochemisty (World Scientific, Singapore, 1994).
3. G. R. Fleming R. van Grondelle, Cufr, Opin. Struct. Biof. 7, 738 (1997).
4. M. M. Martin, J. T. Hynes, Eds., Femtochemistry and Ferntobiology: Uftrafast Events in Molecular Science (Elsevier, Amsterdam, 2004).
5. L. Zhu, J. T. Sage, P. M. Champion, Science 266, 629 (1994).
6. F. Schotte et al., Science 300, 1944 (2003).
7. M. D. Fayer, Ed., Ultrafast infrared and Raman Spectroscopy (Marcel Dekker, New York, 2001).
8. H. Hamaguchi, T. L. Gustafson, Annu. Rev. Phys. Chem. 45, 593 (1994).
9. M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, Proc. Natt. Acad. Sci. U.S.A. 97, 8219 (2000).
10. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, P. L Geissler, Science 301, 1698 (2003).
11. S. E. Bromberg et at., Scjence 278, 260 (1997)
12. D. W. McCamant, P. Kukura, R. A. Mathies, J. Phys. Chem. A 107, 8208 (2003).
13. S. Y. Lee, D. H. Zhang, D. W. McCamant, P. Kukura, R. A. Mathies, J. Chern. Phys. 121, 3632 (2004).
14. Y. Mizutani, T. Kitagawa, Science 278, 443 (1997).
15. The uncertainty principle is not violated because the broadband probe pulse in FSRS is dispersed and its multichannel detection is not time-resolved. In practice, the available information is only limited by the instrumental time resolution and our ability to model the experimental data.
16. W. T. Pollard, S. Y. Lee, R. A. Mathies, f. Chem. Phys. 92. 4012 (1990).
17. R. W. Schoenlein, L A. Peteanu, R. A. Mathies, C. V. Shank, Science 254, 412 (1991).
18. A. Warshel, Nature 260, 679 (1976).
19. R. S. H. Liu, Acc. Chem. Rer. 34, 555 (2001).
20. T. Andruniow, N. Ferre, M. Olivucci, Proc. Natl. Acad. Sci. U.S.A. 101, 17908 (2004).
21. Materials and methods are available as supporting material on Science Online
22. R. A. Mathies, J. Lugtenburg, in Handfook of Biofogicaf Physics, Votume 3: Motecutar Mechanisms in Visuat Transfuction, D. G. Stavenga, W. J. DeGrip, E. N. Pugh Jr., Eds. (Elsevier, New York, 2000), pp. 55-90.
23. E. C. Y. Yan et at., Biochemistry 43, 10867 (2004).
24. M. J. Frisch et af., Gaussian 03, Gaussian Inc., Pittsburgh, PA (2001).
25. G. R. Loppnow, R. A. Mathies, Biophys. f. 54, 35 (1988).
26. G. G. Kochendoerfer, R. A. Mathies, f. Phys. Chem. 100, 14526 (1996).
27. F. Blomgren, 5. Larsson, Chem. Phys. Lett. 376, 704 (2003).
28. K. Palczewski et al., Science 289, 739 (2000).
29. We thank S.-Y. Lee for many helpful discussions and S. Naghibzadeh for expert rhodopsin preparation. This work was supported in part by NIH grant EY-02051.

Supporting Online Material

www.sciencemag.org/cgi/content/full/310/5750/1006/ DC1
Materials and Methods
Figs. S1 to S3
Table 51
3 August 2005; accepted 27 September 2005
10.1126/science. 1118379

The Mid-Pleistocene Transition in the Tropical Pacific

Martín Medina-Elizalde ${ }^{1,2}$ and David W. Lea ${ }^{1,3 *}$

A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the westem equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastem Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.

In the mid-Pleistocenc. ~ 950 thousand years (ky) before the present (B.P.) the elinate of Eanth underwent profound clanges in the length and intensity of its glacial cyeles. This midPleistocene transition (VPT), as indicated by benthic foraminiferal δ^{18} O, was characterized by a change in the dominant periodicity of high-latitude elimate oseillations from 41 ky

[^8]to 100 ky : a positive shift in meat benthic $\delta^{18} \mathrm{O}$, gencrally ascribed to contintental ice-shect expansion; and an increase in the amplitude variability of $\delta^{18} \mathrm{O}$, attributed to more severe glaciations after 950 ky B.P. (I-3). Most of the hypotheses offered to explain these changes involve high-latitude Northem IIemisphere processes steh as jee-sheet or sea-ice dynamies $(2,4,5)$. Recent paleoclimatic reconstructions, however, have shown that during the MP' ${ }^{\prime}$, the tropics also experienced major changes that resemble some aspeets of high-latitude climate valiability but also have their own unigue patterns (6,7). Current hypotheses cannot filly explain these observations and the common
characteristics revealed by paleoclimatic reconstruetions from low and high latitudes.

To test hypothesized causes for the midPleistocenc transition, we reconstructed detailed themal and $\delta^{18} \mathrm{O}$-seawater histories spaminge the MPT from a site in the heart of the western equatorial Pacific (WEP) warm pool (Fig. 1). This location is ideal for testing hypotheses that address proposed forcing mechanisms of tropical climate variability because (i) warm-pool thermal variability is linked throughout the tropics by convection (8); (ii) the warm pool is less subject to regional oceanographic influences such as thermocline depth changes, as demonstrated by the small response of warm-pool sea surface temperatures to El Niño/Southern Oscillation (ENSO) variations (Fig. 1) (9); and (iii) the warm pool is remote from the direct radiative influence of continental ice sheets and has the most direct response to radiative forcing as a result of changes in atmospheric greenhouse gases $(10,11)$.

We determined sea surface temperatures (SSTs), $\delta^{18} \mathrm{O}$, and $\delta^{18} \mathrm{O}$-scawater $\left(\delta^{18} \mathrm{O}_{\mathrm{w}}\right)$ from Ocean Drilling Program (ODP) Itole 806B ($0^{\circ} 19.1^{\prime} \mathrm{N}, 159^{\circ} 21.7^{\prime} \mathrm{L}, 252(\mathrm{l}-\mathrm{m}$ water depth) (12) on the Ontong Java Plateau, using the surface-dwelling planktonic foraminifer (Hlobigerinoides ruber (Fig. 2). Our records reach back to 1.3 million years (My) B.P.. with an average resolution of 2.3 ky , extending a previous study (13). We used the Mg-paleothermometry technique, which is based on the temperature dependence of Mg substitution in calcite, and calculated $\delta^{18} \mathrm{O}_{\mathrm{w}}$ following previous protocols $(13,14)$. We constructed the Hole 806B age model by visual alignment of the G. ruber $\delta^{18} \mathrm{O}$ sequence to the ODP Hole 677 benthic $\delta^{18} \mathrm{O}$ record (14,15). Hole 806B has remarkably constant sedimentation rates ($2.0 \pm 0.3 \mathrm{~cm} / \mathrm{ky}$) from 0.45 to 1.3 My B.P. and, because of its location above the present-day lysocline depth, it also has good preservation of foraminifer shells. There are only two coring gaps of $\sim 0.9 \mathrm{~m}$ ($\sim 50 \mathrm{ky}$) that include parts of marine isotope stage (MIS) 19 and MIS 37 (14).

The G. ruber $\delta^{18} \mathrm{O}$ data indicate 12 glacialinterglacial (G-I) oscillations from MIS 13 to 41 between 450 and 1348 ky B.P., in agreement with reference foraminiferal $\delta^{18} \mathrm{O}$ records (12, 15) (Figs. 2 and 3). Over the past 900 ky, the G-I range of $\delta^{18} \mathrm{O}$ is larger by about one-third than the corresponding early Pleistocene (900 to 1348 ky) range, but mean $\delta^{18} \mathrm{O}$ remains the same $[-1.60 \%$ (per mil) and -1.56%, respectively]. Spectral analysis of the Hole $806 \mathrm{~B} \delta^{18} \mathrm{O}$ data indicates that over the past 900 ky , the $100-\mathrm{ky}$ period component explains more than 70% of the variance in $\delta^{18} \mathrm{O}$, whereas during the early Pleistocene (EP) similar power is shared by ~ 90-ky and 41-ky-related periodicities, with a minor contribution from the $23-\mathrm{ky}$ period. The presence of significant power at a ~ 90-ky period might be the result of a strong salinity component at site 806 B during the early Pleistocene (16).

The observed $\mathrm{Mg} \mathrm{Mg}^{\prime} \mathrm{d}$-derived SST average from the carly and mid-Plestocenc time intervals combined (firm 500 to 1348 ky B.P.) is $27.8^{\circ} \mathrm{C}$, similar to the late Pleistocenc (0) to 500 ky B.P.) SST average of $27.4^{\circ} \mathrm{C}^{\prime}(13)$. The G-I SST range over the mid-to-early Pleistocene is smaller than
that during the late Pleistocene, $3^{\circ} \mathrm{C}$ versus $4.3^{\circ} \mathrm{C}$, respectively. This difference is largely a consequence of wamer ($\sim 0.7^{\circ} \mathrm{C}$) glacial intervals, relative to the late Pleistocenc; average interglacial SSTs $\left(\sim 29^{\circ} \mathrm{C}\right)$ are similar throughout the record. The warmest temperatures during

Fig. 1. Map showing the correlation of Kaplan interannual SST anomalies between the site of Hole $806 \mathrm{~B}\left(0^{\circ} 19.1^{\prime} \mathrm{N}, 159^{\circ} 21.7^{\prime} \mathrm{E}\right)$ and other regions of the tropics (28). Correlations are based on 55T data on a 5 by 5 grid of monthly anomalies from 1856 to 2003. The base period used for the anomalies is 1951 to 1980 . Locations of ODP Hole 846 (6) ($3^{\circ} 5^{\prime} \mathrm{S}, 9049^{\prime} \mathrm{W}$) and MD97-2140 (7) $\left(2^{\circ} 02^{\prime} \mathrm{N}, 141^{\circ} 46^{\prime} \mathrm{E}\right.$) are also indicated. Warm-pool SST anomalies near Hole 306B are positively correlated with temperature anomalies in a wide swath of the tropical oceans. Warm-pool anomalies are either uncorrelated or are anticorrelated with anomalies in the eastern equatorial Pacific cold tongue (i.e., Hole 846), a consequence of their opposite behavior during ENSO changes (20). The location of ODP Hole 677 [reference benthic foraminiferal $\delta^{18} \mathrm{O}$ record in (15)] is also shown ($1^{\circ} 12^{\prime} \mathrm{N}, 83^{\circ} 44^{\prime} \mathrm{W}$).

Fig. 2. Western equatorial Pacific ODP Hole 806B records based on the surface-dwelling foraminifera G. ruber. This record includes a previous (13) reconstruction for the late Pleistocene (4 to 470 ky B.P.). Gaps in the records are the result of coring gaps. The chronology is based on wiggle matching to the target core ODP Hole 677 benthic foraminiferal $\delta^{18} \mathrm{O}(14,15)$. (A) C. ruber $\mathrm{Mg} /$ Ca-derived SST record. $\mathrm{Mg} /$ Ca data were converted using the relationship: SST $\left(\mathrm{C}^{\circ}\right)=$ $0.089^{-1 *} \ln [\mathrm{Mg} / \mathrm{Ca}(\mathrm{m}) / 0.3]$ (13). Each point is the average of two to four replicates. The mid-Pleistocene transition (MPT) at ~ 950 ky B.P. is indicated by a gray bar. Evolutionary spectral analysis plot for SST (top) from 250 to 1100 ky B.P. is based on the multitaper method (14). The scale represents $\log _{10}$ units ${ }^{2}$ per cycle per ky. The evolutionary spectral analysis reveals that the SST record is dominated by the ~ 100-ky period over the last 950 ky B.P. and by ~ 41-ky and ~ 60-ky-related periods from 1346 ky to 950 ky B.P. (B) G. ruber $\delta^{18} \mathrm{O}$ record. The G-I range of $\delta^{18} \mathrm{O}$ increases over the MPT. (C) $\delta^{18} \mathrm{O}-$ seawater record, calculated by extracting the component in planktonic $\delta^{18} \mathrm{O}$ explained by the $\mathrm{Mg} / \mathrm{Ca}-$ derived SST using the low-light
 paleotemperature equation determined for Orbulina universa (29). Neither the calcite nor the seawater $\delta^{18} \mathrm{O}$ records shows a positive shift over the MPT.
the mid- and early Pleistocene occumed in VIS $25\left(29.8^{\circ} \mathrm{C}, 952\right.$ ky B.P., and the coldest in MIS $30\left(26^{\circ} \mathrm{C}\right), 1052$ ky B.P. (Fig. 2). The midPlesistocene transition is well represented in the Ifole 806B SST record (Fig. 2). Mean SST and the average ($\mathrm{H}-\mathrm{l}$ change in SS' do not shift over the MPT, in contrast to changes observed in
benthic $8^{18} \mathrm{O}$ (Figs. 3 and 4). Average SSTs during the carly and mid-Pleistreene (500 to 900 ky B.P.) are vintually identical, $27.9 \perp 0.7^{\circ} \mathrm{C}$ and $27.7-0.7^{\circ} \mathrm{C}(1 \mathrm{SD})$, respectively (Fig .2).

The $G-I$ range in $\delta^{18} \mathrm{O}$, calculated from measured $\delta^{1 \times 0} O$ and inferted temperatures, is $\sim 0.7 \%$ over the full length of the record (Fig.

Fig. 3. (A) ODP Hole 677 benthic foraminiferal $\delta^{18} \mathrm{O}$ record (15) showing a mean positive shift of 0.25% at ~ 900 ky B.P. and longterm stability from 1340 to 900 ky B.P. (dashed lines are linear regressions). The linear regression of $\delta^{18} \mathrm{O}$ over this time interval is not statistically significant (17). Top: Spectrogram of benthic $\delta^{18} \mathrm{O}$ from 250 to 1100 ky B.P. showing the shift in the dominant period from 100 ky to 41 ky at $\sim 950 \mathrm{ky}$ B.P. (gray bar) (14). The scale represents $\log _{10}$ units ${ }^{2}$ per cycle per ky. (B) Hole 806B G. ruber SST record showing no significant secular change from 1340 to 800 ky B.P. and long-term thermal stability over the MPT (red line before the transition represents a nonsignificant linear regression; slope $=$ zero, 95% CI). (C) SST record from eastern equatorial Pacific ODP Hole 846 ($3^{\circ} 5^{\prime} \mathrm{S}$, $90^{\circ} 49^{\prime} \mathrm{W}$) based on the alkenone unsaturation index (6). The statistically significant linear regression (slope \neq zero, $95 \% \mathrm{CI}$) showing a secular cooling trend from 1340 to $900 \mathrm{ky} \mathrm{B.P}$. is indicated (green line). As a consequence, from 1340 to 900 ky the equatorial Pacific temperature zonal gradient increased by $\sim 1.3^{\circ} \mathrm{C}$.

Fig. 4. Blowup of the midPleistocene transition as seen in the Hole 806B SST record (A) and the Hole 677 benthic foraminiferal $\delta^{18} \mathrm{O}$ record (B). Right panels show a blowup over the MPT of the spectrograms shown in Figs. 2 and 3. The interglacial peak centered on 950 ky B.P. is MIS 25. Note the presence of the positive shift in benthic $\delta^{18} \mathrm{O}$ at ~ 900 ky B.P. and the absence of a similar shift in SST at that time. The transition between the 41-ky and 100-ky variability occurs between 950 and 1000 ky B.P. in both records. Point-topoint comparisons between the two signals suggest that SSTs lead benthic $\delta^{18} \mathrm{O}$ by ~ 3 ky over the MPT. The same pattern can be seen between SST and planktonic $\delta^{18} \mathrm{O}$ in Hole 806B (Fig. 2).

2). A previous study of the late Pleistoceme record from Hole $806 \mathrm{~B}(13)$ demonstrates that $\delta^{18} \mathrm{O}_{\mathrm{w}}$ at this site is strongly influenced by hydrological changes on G-l time scales. In addition to orbital fiequencies, the $\delta^{18} \mathrm{O}_{\mathrm{w}}$ time series also shows quasiperiodic -200 -ky cycles during the early and mid-Pleistocene time interval. These cyeles might be related to long-term hydrological evolution in this region, suggesting that $\delta^{18} \mathrm{O}_{\mathrm{w}}$ is not a simple proxy of ice volume at this site. The G-I range of Hole $806 \mathrm{~B} \delta^{18} \mathrm{O}_{\mathrm{w}}$ increases by $\sim 0.16 \%$ during the MPT, from an early Pleistocene value of 0.72% to a midPleistocene value of 0.88%, which likely reflects increasing variability in continental ice as suggested by benthic foraminiferal records ($1-3$).

The Hole 806B SST record is spectrally similar to the ODP Hole 677 reference benthic foraminiferal $\delta^{18} \mathrm{O}$ record (15), with a characteristic dominance of ~ 100-ky and 41 -ky periods and a much weaker contribution at 23 ky (Figs. 2 and 3). As suggested by evolutionary spectral analysis of Hole 806B SST and Hole 677 benthic foraminiferal $\delta^{18} \mathrm{O}$, the transition between the $41-\mathrm{ky}$ and $100-\mathrm{ky}$-dominant modes of variability occurred at ~ 950 ky B.P. (Fig. 4, right panels). Point-to-point comparison between these two records over the MPT reveals that G. ruber SST leads benthic $\delta^{18} \mathrm{O}$ by ~ 3 ky (Fig. 4). Furthermore, cross-spectral analysis between G. ruber SST and benthic foraminiferal $\delta^{18} \mathrm{O}$ reveals that SST leads benthic $\delta^{18} \mathrm{O}$ by $3 \pm 1.2 \mathrm{ky}$ [95% confidence interval $(\mathrm{CD})]$ at the $41-\mathrm{ky}$-dominant period during the early Pleistocene.

SST records from two other sites in the tropical Pacific, one in the eastern equatorial cold tongue (6) and a second in the area of strong intertropical convergence zone influence northwest of our site (7), provide basinwide context for our records (fig. 1). Comparison of these SST records firom 1348 to 900 ky B.P. suggests a strengthening of the zonal equatorial Pacific SST gradient by $\sim 1.3^{\circ} \mathrm{C}$, due almost entirely to the cooling in the eastern Pacific. The development of this SST gradient occurred during a time interval in which there was no secular change in WEP SSTs, as revealed by the two western Pacific SST records (7) (Fig. 3). High-latitude climate, as indicated by the Hole $677 \delta^{18} \mathrm{O}$ record, was also relatively stable at this time (Fig. 3). Statistical analysis of benthic foraminiferal records and the Hole $806 \mathrm{~B} \delta^{18} \mathrm{O}_{\mathrm{w}}$ series reveal that high-latitude climate was relatively stable for more than 400 ky before the MPT (Fig. 3) (17). This observation suggests that the intensification of tropical Pacific zonal temperature gradients and the inferred enhancement of the Walker circulation at this time was not accompanied by regional long-term hydrological changes in the WEP and Northern Hemisphere high-latitude climate reorganizations, in contrast to previous suggestions $(7,18)$.

The long-term surface cooling of the easternboundary upwelling regions from 1350 to 900 ky
B.P. (6), while the warm pool and Northem Hemisphere elimate remained relatively stable, may be related to secular changes in the density of the deep oecan that influeneed the depth of the themocline, as previously predicted (9). This cooling has been imvoked by a number of hypotheses addressing the MPT (7, 18). The thermal stability of the WIP, where SSl's are expected to respond themodynamically to atmospheric radiative forcing, and the coinciding high-latitude climate stability from 900 to 1350 ky B.P. reflected by benthic $\delta^{1 \times}$ O records, do not support changes in radiative forcing as the cause of the infened eastem equatonial Pacific (IBPP) secular cooling trend (7). Benthic foraminiferal carbon isotopic records, interpreted as a proxy of the thermohaline cireulation, show a decrease in the $8^{13} \mathrm{C}$ contalst between the North Atlantic and Pacific from 1.3 My B.P. to ~ 800 ky B.P. (19). The cooling in the EEP might reflect shallowing of the thermocline resulting fiom an increase in stratification produced by the decp-ocean circulation rearrangenconts suggested by $\delta^{19} \mathrm{C}$ records. Model calculations suggest that a modest change in the temperature difference across the themocline of only a few tenths of a degrec ean produce changes in the EEP SSTs of over $1^{\circ} \mathrm{C}$ (9).

The spectral propertics of the Hole 806 BSSl record provide a powerful test of cunent hypotheses addressing Pleistocenc tropical and high-latitude climate variability and the midPleistocenc transition. The spectral resemblanec between the WEP (IIole 806B) and EEP (IFole 846) (6) SST rocords is striking (Fig. 3). Sca surface temperature variations in both end nembers of the equatorial Pacifie are statistically coherent and in phase within the $2-\mathrm{ky}$ resolution of the sites, and both records switch from 41-ky to $100-\mathrm{ky}$-dominalat periods duning the MPT (fig. S3). Furthemore, the carly Pleistoecne (i-I SST range from both ITole 806 B and ITole 846 is similar $3^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}$, respectively. Ioday, SST's in the EEP are strongly influenced by winddriven themnoeline depth changes ($3 f$). In the WEP, where the themocline is very deep (-100 m), SS's are much less likely to be affected by themocline depth changes $(9,20)$. Because of this difference interannual $\mathrm{SS} \mathrm{l}^{\circ}$ anomalies it the litiP cold tongue associated with the l:NSO phenonicnon are not correlated with anomalics near site 8063 (Fig . 1). Futher support for differences in the thermal evolution of the two equatorial Pacific end members lies it the observed long-temn themall stability of the Wi: during the interval in which the lilip became progressively colder, intensifying Pacific zonal gradients after $1350 \mathrm{ky} \mathrm{B.P}$ (Pig .3). These observations suggest that a mechanism that invokes ehanges in thermoeline depth (6) is unlikely to explain the observed wanm-pool SST variability, becanse such a mechanism would not produce strong 41-ky cycles in SST in the WEP. On the other hand, as pointed ont by Lin and IIerbent (6), the sense of amual insolation
changes in the tropics as driven by obliquity variations is in the opposite dircetion of that reguired to drive the observed tropical SST changes. We suggest instead that both end members of the equatorial Pacific responded to a common factor: atmospheric CO_{2} forcing.

Consideration of the radiative forcing by different components potentially implicated in the Last Glacial Maximum suggests that atmospheric CO_{2} changes are the domithatt sontee of radiative forcing in the tropical oceam regions (10). A crucial mole of atmospheric CO_{2} in foreinge tropical and Southem IIemisphere climate valiability is strongly suggested by the observation that Antaretic air temperatures (21.22), tropical SSTs (1I), and bottom-water temperaturcs (2.3) are in phase with atmospheric CO_{2} and lead benthic foraminiteral $\delta^{1 \times} \mathrm{O}$ by several thousand ycars during the late Pleistoeenc. In the same manner, spectral companisons between tropical SST records from the three sites in the tropical Pacific and foraminiferal $8^{1 \times} \mathrm{O}$ over the carly Plestocene reveal that all three SSl records lead foraminiferal $\delta^{1 \times} \mathrm{O}$ by 3 to 7 ky at the dominant 41-ky period (table S3). The inferred lead of SST over continental ice volunce rules out the hypothesis that tropical SST valiability is controlled by the direct radidtive influence of Northem Henlisphere continental ice sheets. The observed pattern of early and mid-Pleistocenc tropical climate variability, marked by synchronous and similar mannitude SSl cycles in both the warm and cold end members of the tropical Pacific, and with a clear lead of both over continental ice volume changes, is remarkably similar to late Pleistocenc elimate obscrvations ($1 /$). The character of Pleistocene climate evolution suggests that the shift in tropical elimate variability from a $41-\mathrm{ky}$ to a 100 -ky-dominated system (Figs. 3 and 4) is the result of changes in greenhouse foreing as mediated by the radiative effect caused by variability in atmospheric 〇O $_{2}$. We speculate that the global carbon system, acting as an internal self-sustained oseillator sensu (f), was paced by obliguity changes during the early Pleistocene (24): this response shifted to the eccentricity envelope of precession after the midPleistocene transition. Future reconstuctions of atmospheric CO_{2} extending back to the MPI , projected as part of the liuropean Project for lee Coring in Antarctica ($1: P \mathrm{PC}$) $(22,25)$, would be a direct test of this hypothesis.

References and Notes

1. N. G. Pisias, T. C. Moore Jr., Earth Planet. Sci. Lett. 52, 450 (1981).
2. P. U. Clark, D. Pollard, Paleoceanography 13, 1 (1998)
3. A. Berger, X. S. Li, M. F. Loutre, Quat. Sci. Rev. 18, 1 (1999).
4. Y. Ashkenazy, E. Tziperman, Quat. Sci. Rev. 23, 1879 (2004).
5. P. Huybers, C. Wunsch, Nature 434, 491 (2005).
6. Z. Liu, D. T. Herbert, Nature 427, 720 (2004).
7. T. de Garidel-Thoron, Y. Rosenthal, F. Bassinot, L. Beaufort, Nature 433, 294 (2005)
8. A. H. Sobel, M. I. Held, C. S. Bretherton, f. Clim. 15, 2702 (2002).
9. S. G. Philander, A. V. Fedorov, Paleoceanography 18, 1045 (2003).
10. A. J. Broccoli, f. Clim. 13, 951 (2000).
11. D. W. Lea, f. Clim. 17, 2170 (2004).
12. W. H. Berger, T. Bickert, H. Schmidt, G. Wefer, Proc. Ocean Drifl. Program Sci. Resufts 130, 381 (1993).
13. D. W. Lea, D. K. Pak, H. J. Spero, Science 289, 1719 (2000)).
14. Materials and methods are available as supporting material on Science Online
15. N. J. Shackleton, A. Berger, W. R. Peltier, Trans. R. Soc. Edinb. Earth Sci. 81, 251 (1990).
16. Comparison of the calcite ®' $^{1 \times 0}$ records from Hole 806B and MD97-2140, a site to the northwest of Hole 806B (7) (fig. S2), sugerets that the waters above site 806B were partly influenced by hydrological (salinity) changes on orbital time scales, with interglacial intervals becorning relatively saltier at site 806 B , as previously inferred for the late Pleistocene (13). This inference is supported by the observation of similar 55T amplitudes accompanied by different $\$ 1{ }^{140}$ amplitudes in the records from these two sites. The power in the $\sim 90-$ ky band displayed by the Hole 806B 8'mo record during the early Pleistocene likely reflects "muted" obliquity cycles as a result of hydrological influence at this site. The $8^{10} O$ record from core MD97-2140 indicates clearer obliquity cycles, suggesting that hydrological influences were stronger near Hole 806B (14).
17. To evaluate the presence of statistically significant long-term trends in benthic $\delta^{18} \mathrm{O}$ records from 900 ky to 1346 ky B.P., we performed linear regressions and tested the null hypothesis of zero slope (95% CI) from ODP Holes 677 (15), 846 (26), and 849 (19). These results indicate that there is no statistically significant long-term trend in benthic foraminiferal $\delta^{18} \mathrm{O}$ in any of the three records. The lack of longterm trends in benthic foraminiferal \$1a0 records at this time interval has been previously detected using independent statistical tools (27).
18. E. McClymont, A. Rosell-Melle, Geology 33, 389 (2005).
19. A. C. Mix et at., Proc. Ocean Orill. Program Sci. Results 138, 371 (1995).
20. M. A. Cane, Earth Planet. Sci. Lett. 230, 227 (2005).
21. J. R. Petit et al., Nature 399, 429 (1999).
22. EPICA Community Members, Nature 429, 623 (2004).
23. N. J. Shackleton, Science 289, 1897 (2000).
24. B. Saltzman, Dymamical PateoctimatoLogy (Academic Press, San Diego, CA, 2002).
25. CO_{2} data from EPICA is not yet published, but the late Pleistocene record from Vostok (22) indicates a strong correspondence between ice D / H and $C O$, Using the EPICA \&D record as a proxy for CO_{2}, we observe a correlation of $r-0.70$, with zero phase between EPICA $\overline{\mathrm{ID}}$ and the Hole 806B SST. All the major frequencies are coherent ($95 \% \mathrm{Cl}$) (14).
26. A. C. Mix, J. Le, N. J. Shackleton, Proc. Ocean. Drill. Prog. Sci. Results 138, 839 (1995).
27. M. Mudelsee, M. Schulz, Earth Planet. Sci. Lett. 151, 117 (1997).
28. Kaplan 5ST data provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their Web site at www.cdc.noaa.gov.
29. B. E. Bemis, H. J. Spero, J. Bijma, D. W. Lea, Pafeoceanography 13, 150 (1998).
30. Supported by NSF (OCEO317611) and CONACYTUCMEXUS. Laboratory assistance from D. Pak and J. Horton and mass spectrometer operation by G. Paradis was crucial to the success of this study. We thank H. Spero for isotopic analyser at University of Califormia Davis; T. Kostadinov and P. Huybers for their support in signal processing; J. Kennett and M. Samthein and two anonymous reviewers for their comments and sulgestions; and Z. Liu for discussion. Evolutionary spectral analysis was computed using software provided by P. Huybers.

Supporting Online Material

www.sciencemag.org/cgi/content/full/1115933/DC1
Materials and Methods
SOM Text
Figs. S1 to S5
Tables S1 to S3
References
9 June 2005; accepted 5 October 2005
Published online 13 October 2005;
$10.1126 /$ science. 1115933
Include this information when citing this paper.

Recent Ice-Sheet Growth in the Interior of Greenland

Ola M. Johannessen, ${ }^{1,2 *}$ Kirill Khvorostovsky, ${ }^{3}$ Martin W. Miles, ${ }^{4,5}$ Leonid P. Bobylev ${ }^{3}$

Abstract

A continuous data set of Greenland ice Sheet altimeter height from European Remote Sensing satellites (ERS-1 and ERS-2), 1992 to 2003, has been analyzed. An increase of 6.4-0.2 centimeters per year (cm/year) is found in the vast interior areas above 1500 meters, in contrast to previous reports of highelevation balance. Below 1500 meters, the elevation-change rate is -2.0 - 0.9 $\mathrm{cm} /$ year, in qualitative agreement with reported thinning in the ice-sheet margins. Averaged over the study area, the increase is $5.4-0.2 \mathrm{~cm} /$ year, or $\sim 60 \mathrm{~cm}$ over 11 years, or $\sim 54 \mathrm{~cm}$ when corrected for isostatic uplift. Winter elevation changes are shown to be linked to the North Atlantic Oscillation.

The Greenland Ice Sheet is im object of increased attention for at least two reasons related to global climate chames (1,2). First, complete meltine of the iec sheet would raise the global sea level up to 7 m . This process, expected to occur on a millennial time scale, should begin when the criticall $\sim 3^{\circ} \mathrm{C}$ threshold for Greenland climate warming is erossed, perhaps before the end of this century (2,3). Second, increased Greenland lee Shect melt and freshwater input into the northem North Atlantic Ocean have been theorized to weaken or even disrupt the global thermohaline circulation on a relatively rapid, multidecadal time scale $(4,5)$. Here, we address changes in the surface elevation of the interior of the Greenland Ice Sheet, which is pertinent to both of these critical issues through glacier mass balance, i.e., accumulation minus losses.

The response of the Greenland Ice Sheet to climate forcing is not straightforward, because variability in solar radiation, greenhouse gases (GHGs), atmospheric circulation, surface temperature, cloud cover, precipitation, and albedo, as well as glacier-flow dynamics, may affect the magnitude, rate, and direction of changes in glacier mass balance ($1-3,6$). Efforts to measure changes in the Greenland Ice Sheet from field observations and aerial and satellite remote sensors have improved our knowledge over the past decade, although there is as yet no consensus assessment of the overall mass balance of the ice sheet (6). There is nonetheless considerable evidence of melting ($7-9$) and thinning $(10,11)$ in the coastal marginal areas in recent years, as well as indi-

[^9]cations that large Greenland outlet glaciers can surge at subdecadal time scales (/2), possibly in response to climate. Less known are changes that may be oecurring in the vast elevated interior area of the ice sheet, although a balance has been reported based on some tracks of aerial laser altimetry, unevenly sampled in space and time (1/), /3). This underscores the need for long, continuously sampled data sets, such as those derived from satellite altimetry. Whereas decadal and longer satellite-denived data sets have been developed for surface melt (7-9), the surface-elevation data sets analyzed previously have been discontinuous ($10,11,13$) and relatively short (14).

Therefore, we derive and analyze a continuous satellite altimeter height record of Greenland Ice Sheet elevations by combining European Space Agency (ESA) ERS-1 and ERS-2 data to (i) determine the spatial patterns of surface elevation changes over an 11-year period, 1992 to 2003, (ii) determine seasonal and interannual variability of the surface elevation over the same period, and (iii) investigate how observed elevation changes are linked to the North Atlantic Oscillation (NAO) pattern of atmospheric circulation (15), which we hypothesize to have an underappreciated role on the Greenland Ice Sheet surface elevation through its effect on winter precipitation. This is a critical issue, as the NAO index (16) is predicted to become more positive in response to increasing GHGs $(17,18)$.

The data set analyzed here to identify Greenland Ice Sheet surface-elevation changes is based on 11 consecutive years of ERS-1 and ERS-2 radar altimeter height measurements (19). The methodology used to calculate elevation changes is based on the crossover analysis using the differences in ice-mode altimeter heights at crossing points of the satellite-orbit ground tracks (19). Elevation change rates ($d / / / / d i$) were ealculated for 0.5° latitude \times 1.0° longitude cells using two methods. In the first method the $d / f / d i$ method (26) we used all available crossovers. The dH/dt was
detemmined as a slope of a linear fit to the crossover difference of clevations versus time interval using descending minus ascending orbits. The second method the time serics method (21)-was applied to form seasonally averaged time serics of clevation change, using descending minus ascending orbits and ascending minms deseending orbits (/9). Thus, the first method gives the spatial elevation change averaged for the entire tince interval, whereas the second method allows investigation of the temporal variability of spatial avcrages.

Ilowever, to merge ERS-1 and ERS-2 as one data set. it is essential to account for bias between the satellites. To achieve this, we developed and applied the following procedures. We applicd the systematic $40.9-\mathrm{cm}$ offset, with ERS-2 being lower then ERS-1, specitied by ISA (22) and confirmed by Brenner and colleagues (23), before investigating the remaining bias. Athough there was a year (1995 to 1996) when the satellites operated in tandent, the number of L RS-liliRS-2 crossover points available during this period is considered insufficient to deternine the betweensatellite bias directly from elevation differences during the overlap (19). Therefore, we estimated the bias using a large number (8 mil-

Fig. 1. Greenland, showing the boundaries (thick line) of the ice sheet and major ice divides (thin lines), adapted from (13). The colors indicate icesheet elevation change rate $(d H / d t)$ in $\mathrm{cm} /$ year, derived from 11 years of ERS-1/ERS-2 satellite altimeter data, 1992 to 2003, excluding some icesheet marginal areas (white). The spatially averaged rate is $15.4 \quad 0.2 \mathrm{~cm} /$ year, or $\sim 5 \mathrm{~cm} /$ year when corrected for isostatic uplift. The white areas between the color-coded pixels and the thick line delimiting the ice sheet indicate no observations. Latitude in " N , longitude in "W.
lion) of crossover points between ERS-1 orbits during its whole period of operation from 1992 to 1996 and ERS-2 orbits fiom a period of equal length, 1995 to 1999, ineluding the 1-year overlap, giving higher reliability (19) (fig. Sl). The calenlated spatially averaged ERS-1/ERS-2 bias is $21.5-2.0 \mathrm{~cm}$. The bias is spatially variable, and the cffect of the bias on determining $d H / d t$ from the crossover data varies from typically ~ 2 cmiyear over the interior plateau to about 20 cm year over iceshect margins (19). We applied this bias for each ERS-1 \times ERS-2 crossover point before calculating the $d H / d t$ average for each cell.

The spatial pattern of variability derived from the $d H / d t$ method is mapped as the 11-year elevation-change rate for each cell (Fig. 1), based on 45 million crossover points distributed over three data sets: ERS-1 (ERS-1 \times ERS-1), ERS-2 (ERS- $2 \times$ ERS-2), and ERS-1 and ERS-2 (ERS-1 \times ERS-2). Positive $d H / d t$ values are generally found over most of the high-elevation areas, with largest positive values of up to 10 to $20 \mathrm{~cm} /$ year in southwestern $\left(<69^{\circ} \mathrm{N}\right)$ and eastern Greenland between $74^{\circ} \mathrm{N}$ and $77^{\circ} \mathrm{N}$. The largest negative values, -25 to $-30 \mathrm{~cm} /$ year, are found in several parts of western Greenland, where independent aerial altimetry in 1997 and 2002 to 2003 also found the greatest thinning (11). Negative values are also found in southeastern Greenland $\left(63^{\circ} \mathrm{N}\right.$ to $66^{\circ} \mathrm{N}$) and in the northeastern ice stream $\left(78^{\circ} \mathrm{N}\right.$ to $\left.80^{\circ} \mathrm{N}\right)$, with values of -10 to -15 $\mathrm{cm} /$ year. The regional differences in elevation change reflect, to varying degrees, the location of ice divides (Fig. 1), notably between southwest and southeast Greenland, +10 to $+20 \mathrm{~cm} /$ year and -5 to $-15 \mathrm{~cm} /$ year, respectively. The most substantial thinning is observed over outlet glacier areas, particularly in western, southeastern, and northeastern Greenland, which implies a dynamic mechanism in addition to changes in precipitation and melting [e.g. $(24,25)]$.

The surface-elevation change rate averaged over the Greenland Ice Sheet [excluding those marginal cells with unreliable data (19)] is $+5.4 \pm 0.2 \mathrm{~cm} /$ year, or $\sim 60 \mathrm{~cm}$ for the period 1992 to 2003. We have partitioned the variability into different elevation bands of 500 -m intervals, starting at $<1500 \mathrm{~m}$ and extending to $>3000 \mathrm{~m}$ (Table 1). Below 1500 m . where summer melting is pronounced, the meat $d / f / d i$ is $2.0+0.9 \mathrm{cmi}$ year for the period 1992 to 2003. Above 1500 m , the mean $d / / / d t$ is $6.4+0.2$ cmiycar. These $d / f / d f$ values are obtained before correcting for isostatic uplift, which is estimated to be approximately 0.5 cm year averaged for the entire Grecnland lee Sheet (26). When adjusted for average uplift, the overall ice thickness changes are thus about $15 \mathrm{~cm} /$ year or 54 cm over 11 years, whereas above 1500 m , these valucs arc about 6 cml year or 65 cm over 11 years. The latter results are in contrast to the

Table 1. Spatially averaged elevation-change rates ($\alpha H / d t$) and $S E$ partitioned over different elevation bands of the Greenland Ice Sheet, 1992 to 2003, not corrected for isostatic uplift. The uncertainties (-) in columns 2 and 3 are SE when averaging results within each band. The values in column 3 are SE of the slope of the linear fit determined for each cell. The areas corresponding to each elevation band are indicated in column 4. These values exclude those cells with unreliable, discarded data (Fig. 1) (19), mostly from the lowest elevation band.

Elevation band (km)	DH/dt $(\mathrm{cm} /$ year $)$	Standard error (cm/year)	Area $\left(10^{3} \times \mathrm{km}^{2}\right)$
61.5	-2.0 ± 0.9	0.4 ± 0.04	155.1
$1.5-2$	$5.6+0.5$	$0.3+0.03$	228.2
$2-2.5$	7.0 ± 0.4	0.2 ± 0.02	398.9
$2.5-3$	$6.4+0.3$	$0.2+0.01$	458.3
$\times 3$	$5.5+0.3$	$0.1+0.01$	140.3
All elevation bands	5.4 ± 0.2	0.2 ± 0.01	1380.7

Fig. 2. Interannual variability of spatially averaged Greenland Ice Sheet elevation, shown as anomalies from the 11-year mean, 1992 to 2003. The data are aggregated into areas $>1500 \mathrm{~m}$ elevation (red) and $<1500 \mathrm{~m}$ (blue), indicating divergent trends since 2000. The vertical bars indicate SE when averaging the results for each cell.

Fig. 3. Spatially averaged changes in winter Greenland Ice Sheet elevation (red) and winter NAO index (blue), lagged 1 month, 1992 to 2003. Winter elevation change during, e.g., 1994/1995 was determined by subtracting autumn 1994 from winter 1994/ 1995. For elevation, winter is defined as December-JanuaryFebruary with, e.g., winter 1994/ 1995 specified as 1995. The correlation coefficient between elevation change and the NAO index is -0.88 when lagged 1 month, e.g., November-December-January for the NAO and December-January-

high-elevation balance reported previously (10,13), based on spatially and temporally discontinumus obscrvations, in contrast to our 11 year datal set compnising 45 million crossover points. The positive changes observed here imply increased accumulation, supported by evidenee that elevation changes it the interior of Greenland can be attributed primaily to snow accunulation (27).

The time-series analysis (19) of elevation changes spatially averaged over all cells $<1500 \mathrm{~m}$ and $>1500 \mathrm{~m}$ indicates seasonal and intcrannmal variability of $u p$ to tens of cm (Fig. 2). Below 1500 m , there is no significant
trend until 1999, after which a negative trend of ~ 6 cmyear is evident. Above 1500 m , the positive change is $6.1-0.6 \mathrm{~cm}$ 'ycar, confimming the result from the $d H / d t$ method. The overall clevation change derived from the time-series method is $+5.3 \perp 0.5 \mathrm{~cm} / \mathrm{ye}$ ar, also confirming the $d / l / d f$ result.

Regional temperature and precipitation are both influcneed by the NAO (15). Because the NAO in winter strongly affects precipitation, with $r-0.75$ for model-calculated total precipitation for Greenland and $r \sim-0.80$ for southern Greenland (2f) we hypothesized that the NAO weather and precipitation pattem

Fig. 4. Composite winter sea-level pressure (mb) in Greenland and surrounding areas (A) 1994/1995 and (B) 1995/1996, which have positive and negative NAO index values, corresponding to negative and positive changes in Greenland Ice Sheet surface elevation, respectively (see Fig. 3). Data are from National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (35).

strongly affects ice-sheet elevation change. Inowcver, systematic procipitation measurements are available almost exclusively for the coastal stations and not the interior, such that the $\mathrm{N} \wedge \mathrm{O}$ index may serve as a proxy for precipitation. Therefore, we cxamine the direet relation between Greenland Ice Sheet elevation change and the NAO index (/6). Ijevation changes during winter have been calculated from the time serics using the differences between winter (December-Januany-Febnuary) and the preceding antumin (September-October-Novenber). Figure 3 shows ice-sheet elevation changes duing winter and the winter NAO index for 1992 to 2003. The conelation between elevation changes and the NAO is maximum when lagged one month, e.g., November-December-Januady for the NAO and December-latmary-february for elevation, with $r \sim-0.88(s<0.05, \mathrm{df}=10)$, thus cxplaining about threc-quatters ($f^{2} \sim 0.77$) of the elevation chames. The conelations for spring, summer, and autumn are, as expected, lower: $0.04,-0.08$, and -0.28 , respectively, implying no significant effect of the $N N O$ during these seasons. The winter conrelation (-0.88) is stronger that the above-mentioned correlations for the NAO and modeled Greenland precipitation (2f), which inplies that the NAO index is a very good proxy for winter precipitation data. Thercfore, strongly ncgative NAO -index conditions lead to increased accumulation and clevation change during wintertime, and viec versa this is exenoplified by the changes observed from 19941995 (10.1 cm) to $1995 / 1996(111.6 \mathrm{~cm})$, associated with a record positive-to-ncgative NAO reversal (2.4o to 3.1σ (H ig. 3).

The relation is based not only on the intensity of the NAO but also on the development and position of the Icelandic Low (29), which, for example, shiffed southwestward to Cape Farewell between 1994:1995 and 1995: 1996 (Fig. 4), giving higher precipitation cspccially in southem Greenland. Ilowever, in other years, a weak negative N / O index may be due simply to a weakly developed Icelandic Low, in which case the elevation change is barely positive, as in 2001 (Fig. 3). The relationship appears weak it the most recent years, sinec 2001, with the NAO index relatively neutral.

The observed conrelation between the NAO and ice-shect elevation changes suggests that future trends in the NAO could intluence the Greenland lec Sheet surface elevation. The winter NAO index trend has been generally positive sitece the 19605, although dwing our 1992 to 2003 study period, the trend happened to be slightly negative, heree the observed increase in elevation. Model experiments with increasing atmospheric concentrations of (iHGs generally indicate an increasing (positive) NAO and a slight northeastward displacement of the leclandic Low in the future (17,18)-both implying less winter aceumulation over Gireenland.

Nonetheless, as mentioned, the NAO can explain abont threc-quarters of the surface elevation changes, leaving us to speculate on other factors. A modeling study (30) of the Greenland Ice Sheet mass baldace under greenhouse global warming has shown that temperature increases up to $2.7^{\circ} \mathrm{C}$ lead to positive mass-balance changes at high clevations (duc to accumulation) and negative at low elevations (duc to imnoff cxocoding aecumulation), consistent with our findings, which implies that perhaps a quarter of the growth may be caused by global warming in Greenland (3I) in our observation period. turthermore, the observed elevation change implies that ice-sheet growth in the interior of Grecnland may partly offset the freshwater flow of the retreating subpolir glaciers needed to explain the freshening rate of the world ocean, which can be explained almost entircly by Aretic sea-ice melt (32).
th conelusion, we have presented new evidenee of (i) decadal inerease in surface clevation ($-5 \mathrm{~cm} / \mathrm{ycar}$) within a study area comprising most of the Gircenland Ice Shect. 1992 to 20003 , caused by accumulation over extensive areas in the interion of Greenland; (ii) divergence in clevation changes since the year 2000 for areas above and below 1500 m , with high-elevation inereases and low-elevation decreases, the fommer in contrast to previous research (If), 1.3): and (iii) ncgative correlation between winter elevation changes and the NAO index, suggesting an underapprociated role of the winter season and the NAO for elevation changes a wild eard in Grecnland Ise Shect mass-balance scenarios under global waming.

There are, however, caveats to consider. First, we cannot make an integrated assessment of elevation changes-let alone ice volume and its equivalent sea-level change for the whole Greenland Ice Sheet, including its outlet glaciers, from these observations alone, because the marginal areas are not measured completely using IRRS-1/IRSS-2 altimetry (sce Fig. 1). It is conceivable that pronounced ablation (c.g., $/ f, / l$) in low-clevation marginal areas could offset the elevation increases that we observed it the interior arcas. Second. there is large interammal to decadal vaniability in the high-latitude elimate system including the NAO, such that the 11 -year-long data set developed here remains too brief to establish long-temn trends. Therefore, there is clearly a nead for continucd monitoring using new satellite altimeters-including advanced ones with improved ice-shoct ranging in stecper coastal areas-and other remote-sensing and field observations, together with numerical modeling to calculate the mass budget through net losses and net input from snow (33)

References and Notes

1. Intergovernmental Panel on Climate Change, Climate Change 2000: Thind Assessment Report (Cambridge Univ. Press, Cambridge, 2001).
2. Arctic Climate Impact Assessment, Impacts of a Warming Anctic (Cambridge Univ. Press, Cambridge 2004).
3. J. M. Gregory, P. Huybrechts, S. C. B. Raper, Nature 428, 616 (2004).
4. S. Rahmstorf, Clim. Change 46, 247 (2000).
5. T. Fichefet et af., Geophys. Res. Lett. 30, 1991, 10.1029 / $20030 L 017826$ (2003).
6. E. Riģnot, R H. Thomas, Science 297, 1502 (2002).
7. W. Abdulati et al., J. Geaphys. Res, 106, 33729 (2001).
8. W. Abdalati, K. Steffen, J. Geophys. Res. 106, 33983 (2001).
9. K. Steffen, S. V. Nghiem, R. Huff, G. Neurnann, Geophys. Res. Lett. 31, L20402 10.1029/2004GL020444 (2004).
10. W. Krabill et al., Science 289, 428 (2000).
11. W. Krabill et al., Geophys. Res. Lett. 31, L24402, 10.1029/2004GL021533 (2004).
12. I. Joughin, W. Abdulati, M. Fahnestock, Nature 432, 608 (2004).
13. R. Thomas et al., f. Geophys. Res. 106, 33707 (2001).
14. K. Khorostovsky, O. M. Johannessen, L. P. Bobylev, in Arctic Environmental Variabifity and Global Change, L. P. Bobylev, K. Ya. Kondratyev, O. M. Johannessen, Eds. (Springer Praxis, Chichester, UK, 2003), pp. 270-280.
15. J. Hurrell, Y. Kushnir, G. Ottersen, M. Visbeck (Eds.), The North Atlantic Osciflation: Climatic Significance and Envionmentat frmacts (American Geophysical Union, Washington, DC, 2003).
16. The NAO index used here is defined as standardized (c) sea-level pressure (SLP) differences between Iceland and Gibraltar (34).
17. T. Osborn, Cfism. Dyn. 22, 605 (2004)
18. 5. I. Kuzmina et at., Geophys. Res. Lett. 32, L04703, 10.1029/2004GL021064 (2005).
1. Materials and methods are available as supporting material on Science Online.
2. H. J. Zwally, A. C. Brenner, J. A. Major, R. A. Bindschadler, J. G. Marsh, Science 246, 1587 (1989).
3. D. J. Wingham, A. J. Ridout, R. Scharroo, R. Arthern, C. K. Shum, Science 282, 369 (1998).
4. P. Femenias, ERTNRS-RA-C022, May 1996 http $/ /$ earth. esa.int/pub/ESA_DOCIQLOPR/er_tn_rs.pdf.
5. A. C. Brenner, H. J. Zwally, H. G. Cornejo, J. L. Saba, Proceedings of the ERS-ENVISAT Symposium, 16-20 October 2000, Gothenburg, Sweden (2000).
6. R. Layberry, J. Bamber, f. Geophys. Res. 106, 33781 (2007).
7. C. H. Davis et al., f. Geophys. Res. 106, 33743 (2001).
8. J. Wahr, T. van Darn, K. Larson, O. Francis, f. Geophys Res. 106, 33755 (2001).
9. J. R. McConnell et at., Nature 406, 877 (2000).
10. D. H. Bromwich, O S. Chen Y F Li, R. I Cullather f. Geophys. Res. 104, 22103 (1999).
11. J. C. Rogers, D. J. Bathke, E. Moseley-Thompson, S.-H. Wang, Geophys. Res. Lett. 31, L212308, 1029/2004GL021048 (2004)
12. P. Huybrechts, A. Letreguilly, N. Reeh, Pateogeogr Pateoclim. Pateoecol. 89, 399 (1991).
13. P. Chylek, U. Lohmann, Geophys. Res. Lett. 32, L14705 10.1029/2005CL023552 (2005).
14. P. Wadhams, W. Munk, Geophys. Res, Lett. 31 L11311, 10.1029/2004GL020039 (2004).
15. E. Hanna et al., f. Geophys. Res. 110, D13108, 10.1029/ 2004JD005641 (2005).
16. P. D. Jones, T. Jónsson, D. Wheeler, int. f. Climatol 17, 1433 (1997).
17. E. Kalnay et al., Budt. Am. Meteorol. Soc. 77, 437 (1996).
18. Supported by the Research Council of Norway through the "Marine climate and ecosystems in the seasonal ice zone (MACESIZ)" and "Mass balance and freshwater contribution of the Greenland Ice Sheet: A combined modeling and observational approach" projects; the Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography; the

International Association for the Promotion of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS) through the Fellowship Grant for Young Scientists "Greenand Ice Sheet elevation change and variations derived from satellite altimetry" to K.K. This study was also part of the "Climate and Environmental Change in the Arctic-CECA" project nominated for the European Union Descartes Prize 2005. We also thank ESA and NASA Goddard Space Flight Center for providing processed altimeter data, two anonymous reviewers for helpful comments, and R. J. Telford for language editing.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1115356/DC1
Materials and Methods
Fig. 51
References
26 May 2005; accepted 11 October 2005
Published online 20 October 2005;
10.1126/science. 1115356

Include this information when citing this paper

Ancient DNA from the First European Farmers in 7500-Year-Old Neolithic Sites

Wolfgang Haak, ${ }^{\text {T }}$ Peter Forster, ${ }^{2}$ Barbara Bramanti, ${ }^{1}$ Shuichi Matsumura, ${ }^{2}$ Guido Brandt, ${ }^{1}$ Mare Tänzer, ${ }^{1}$ Richard Villems, ${ }^{3}$ Colin Renfrew, ${ }^{2}$ Detlef Gronenborn, ${ }^{4}$ Kurt Werner Alt, ${ }^{1}$ Joachim Burger ${ }^{1}$

The ancestry of modern Europeans is a subject of debate among geneticists, archaeologists, and anthropologists. A crucial question is the extent to which Europeans are descended from the first European farmers in the Neolithic Age 7500 years ago or from Paleolithic hunter-gatherers who were present in Europe since 40,000 years ago. Here we present an analysis of ancient DNA from early European farmers. We successfully extracted and sequenced intact stretches of maternally inherited mitochondrial DNA (mtDNA) from 24 out of 57 Neolithic skeletons from various locations in Germany, Austria, and Hungary. We found that 25% of the Neolithic farmers had one characteristic mtDNA type and that this type formerly was widespread among Neolithic farmers in Central Europe. Europeans today have a 150 -times lower frequency (0.2%) of this mtDNA type, revealing that these first Neolithic farmers did not have a strong genetic influence on modern European female lineages. Our finding lends weight to a proposed Paleolithic ancestry for modern Europeans.

Agriculture originated in the Fertile Ciesecnt of the Near East about 12,000 years ago, from where it spread via Anatolia all over liurope (f). It has been widely suggested that the global expansion of famming included not only the dispersial of cultures but also of genes and languages (2). Archareological cultures such as the Linear pottery culture (Linearbandkeramit or LBK) and Alföldi Vonaldiszes Kerámia (AVK) mark the onset of farming int temperate regions of Europe 7500 years ago (3). These carly farming cultures originated in Hungary and Slovakia, and the LBK then spread rapidly as far as the Paris Basin and the IJkrainc (4,5). The remarkable speed of the LBK expansion within a period of about 500 years and the general mifornity of this archareological unit actoss
a territory of nearly a million square kilometers (Fig. 1), might indicate that the spread was ficted to a considerable degrec by a migration of people ($6-8$). On the other hand, a number of archacological studics suqgest that local European hunter-gatherers had shifted to farning without a large-scale uptake of genes fiom the first farmers $(9-11)$. Genetic studies camied out on modem Europeans have led to conflicting results, with estimates of Neolithic input inten the present population ranginge firm 20 to 100% (I2 20). A theorectical simulation study by Currat and Excoffier (2l) has recently suggested a minor contribution, clearly less than 50% and possibly much less. Conclusive ancient DNA studies on skeletons of the first Bumpean farmers have so far not been published to our knowledge.

To resolve the question regarding the extent of the Neolithic female contribution to the present European population, we collected 57 Neolithic skeletons from 16 sites of the LBK/ AVK culture from Gemmany, Austria, and IIungary. These include well-known archacological sites such as Flombom, Schwetzingen, IEilsleben, Asparn-Schletz, and several new excavations; for example, fiom IEalberstadt and Derenburg Mecrensticg It. All human remains were dated to the LBK or AVK period $(7500$ to 7000 years ago) on the basis of associated cultural finds. We extracted DNA from bome and teeth from the morphologically well-prescrved individuals, and we amplified nucleotide positions (nps) 1599716409 [sec supporting online material (22) \rceil of the mitochondrial genome with four overlapping primer pairs. In addition, we typed a number of coding-region mtDNA polymorphisms, which are diagnostic for major branches in the mtDNA tree (22).
from a total of 57 LBK/AVK individuals analyzed, 24 individuals (42%) revealed reproducibly sucecssfill annplifications of all four primer pairs from at least two independent extractions usually sampled from different parts of the skeleton. Eighteen of the sequences belonged to typical western Iivasian mitloNA branches; there were seven II or V sequences, five T sequenees, four K sequenees, one I sequence, and one $(J 3$ scquence (table $S 1$). These 18 sequenees are common and widespread in modern İuropeats. Near liasterners, and Cen-
${ }^{1}$ Institut für Anthropologie, Johannes Gutenberg Universität Mainz, Sanrstrasse 21, D-55099 Mainz, Germany. ${ }^{2}$ MCDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CBZ 3ER, UK ${ }^{3}$ Estonian Biocentre, Tartu University, 23 Riia Str, Tartu, 51010, Estonia. ${ }^{4}$ Römisch-Germanisches Zentralmuseum, Emst-Ludwig-Platz 2, D-55116 Mainz, Gemany.
${ }^{\text {* }}$ To whom correspondence should be addressed at the Molecular Archaeology Group, Institute of Anthropology, Colonel Kleinmann Weg 2, SBII O2, Johannes Gutenberg University, Mainz D-55128, Mainz, Gemany. E-mail: haakw@uni-mainz.de

Fig. 1. Geographic range of the first Central European farmers. The orange and red areas indicate the widest distribution of the earliest Neolithic farming cultures LBK and AVK after 7500 years before the present. Circles represent sites with N1a haplotypes, and triangles represent sites with other haplotypes. Names are given for N1a sites only. For details on the archaeological sites, see table 53.

Table 1. mtDNA sequences of the six Neolithic N1a types. Sequences are presented as variant nucleotide positions relative to the Cambridge Reference Sequence (31). Nucleotide positions are given, less 16000.

Individual	ID no.	mtDNA sequence 15997-16409
Derenburg 1	DEB1	147.A 172.C 223.T 248.T 355.T
Derenburg 3	DEB3	147.A 172.C 223.T 248.T 320.T 355.T
Halberstadt 2	HAL2	086.C 147.A 172.C 223.T 248.T 320.T 355.T
Flomborn 1	FLO1	147.A 172.C 223.T 248.T 320.T 355.T
Unterwiederstedt 5	UWS5	129.A 147.A 154.C 172.C 223.T 248.T 320.T 355.T
Ecsegfalva 1	ECS1	147.A 172.C 189.C 223.T 248.T 274.A 355.T

tral Asians, and thus these 18 lineages lack the detailed temporal or geographic discrimination required to test the hypotheses we are examining, even though some of them have previously been suggested to be of Neolithic origin on the basis of modem DNA studies (15). We therefore coneentrated on the mtDNA types identified in the other six individuals.

The most striking result is that 6 of the 24 Neolithic skeletons are of the distinctive and rare N1a branch. For verification, we sequeneed 517 clones derived fiom independent extractions from different parts of the six individuals. All six showed the suite of mutations characteristic of the Nla lineage. Five of these six individuals display different Na types, whereas Flombom 1 and Derenburg 3 show identical N1a types (Table 1).

The observed distinct N1a types rule out the possibility of contamination with modem smmples, which can be a problen in ancient mumatn DNA stuclies. It is impliasible that the five types are from five different moderm contaminants, because the fiequency of this type today is very low anywhere in the world, at alout 0.2% (2.325) (fig. S1). It is also unlikely that the sequence variations seen within the five N1a types arc the result of random postmontem DNA damaje
(26.27), becanse three out of six sequenee types thiat we have identified precisely match modem sequenees proviously publishod in the literature (table S2 and supponting references); finally, two futher N1a types (HAL2 and UWSS) precisely fit into predicted but previously mobserved ancestral nodes in the N1a phylogeny (fig. 2), underlining the authenticity of the ancient DNA.

The high frequency of our Ncolithic N1a lineages is not a local phenomenon but is widespread in the LBK arca: Independently sampled locations in IIungary and Gemmany, over 800 km apart. each yielded one or more Nla types (Fig. 1). The modem geographic spread of N1a types partly reflects the Ncolithic situation, alloit at a much lower modemen frequency. All Neolithic LBK types fall into the "European" Nla sub-branch, and this sub-branch today is rane but widespread in Eunope and adjacent pants of Asia and Nonth Africa (Fig. 3). The AVK smmple ECSI shows 16189 C , which is chanacteristic of the Central Asian branch. but in this case is plansibly a paralled mutation in the European banch, because position 16189 mutates nuch nore rapidly than the contlicting 16320 position (28).

We next addressed the question of whether the 150 -times lower fieguency of Nla in modem

Europeans might be due to simple genetic drift over the past 7500 years. Given a frequency of N1a within our Neolithic sample of 25%, the frequency in the Neolithic LBK population is estimated to lie between 8% and 42% (95% confidence interval, based on binomial standard error). Even the lower limit of 8% contrasts markedly with an Nla frequency of $0.2 \%(5$ in 2300$)$ in modern mtDNA samples in the LBK area between the Paris Basin and Hungary. Qualitatively, modem Europeans therefore do not appear to be maternally descended from the first farmers. However, there remains a possibility that modern European maternal lineages are descended from the early farmers but that the Nla type has been lost during the past 7500 years through genetic drift. We therefore applied computer simulations to test whether the frequency of the Neolithic N1a types could have been drastically decreased by drift alone in the past 7500 years.

We simulated a scenario that would maximize the chance that N1a has been lost by genetic drift in the couse of the past 7500 ycars. The simulation showed that we should observe at least 74 Nla 's out of the 2300 modern samples. In fact, 95% of the totial runs ended showing betwect 119 and 259 Nla's in the modern satmple. Next, we allowed mignation between the Neolithic popnation and the surounding population per generation. The simulation showed that a migration rate of 1% per gencration throughout 7425 years between the Neolithic population and the swounding population is not crough to reduce the Nla percentage to the low value observed today, because only 5.5% of the total iuns ended in <6 Nla's in the modern simple.

These simulations rejoct the simple hypothesis in which modem Europeans are direct desecndants of these first farmers and have lost N 1 a mainly by genetic dift. ITence the simulations confirm that the first farmers in Central Iaumpe had limited success in leaving a genetic mank on the fenale lincages of modern tiuropeans. This is in contrast to the success of the Neolithic famming culture itself, which sulosequently spread all over Eunope, as the archaeologicial record demonstrates. Onc possible cxplanation is that the farming culture itself spread without the people oniginally carrying these ideas. This ineludes the possibility that small pioneer groups carried fammeng into new arcas of liurope, and that onec the technique had taken root the surrounding hunter-gatherers adopted the new culture and then outmubered the original farmers, diluting their N a frequency to the low modern value. Arehacological rescarch along the Western periphery of LBK and isotope studies of some of our smapled individuals seem to support the idea that male and female hunterEatherers were integated into the Neolithic communitics $(3,70.29)$. This hypothesis implice that Nla was rane or absent in Mesolithic Europeans, which may be a reasonable assumption given the ranty of the Nla type anywhere in the work (Fig. 3). An altemative hypothesis is a sulbsequent post early-Neolithic population replacement in Enope,

REPORTS

Fig. 3. Modern geographic spread of the three N1a branches. Blue circles depict the European branch of N1a, orange circles the Central Asian branch of N1a, and green circles the African/South Asian branch. The three N 1 a branches are defined in the network of Fig. 2. The smallest circle size corresponds to a local frequency of 0.18% and larger frequencies are indicated by proportionately larger circles.
eliminating most of the Naa types. Archaeological evidence for such an event is as yet scant.

The results firm the Neolithic sample show that other mill NA lincages considerably diluted the mtDNA pool of these early Neolithic populations, so that the frequency of N1a in modern Europeans is 150 times lower than in our sample of the first Central liumpocan farmens. This is incompatible with the idea that modem C'entral linmpeans and by implication other liuropeans beyond the LBK/AVK area-derive their mater-
nall lineages purely from the earliest farmers of that region. Within the cunent debate on whether Enopeans are genetically of Palaeolithic or Neolithie origin, and leaving aside the possibility of significant post-Neolithic migration, our data lend weight to the arguments for a Palacolithic onigin of Europeans.

References and Notes

1. D. R. Harris, in The Origins and Spread of Agricufture and Pastoralism in Eurasia, D. R. Harris, Ed. (University College of London Press, London, 1996), Pp. 552-574.
2. J. Diamond, P. Bellwood, Science 300, 597 (2003).
3. D. Gronenborn, J. World Prehist. 13, 123 (1999).
4. E. Bánffy, The 6th Millenium BC Boundary in Western Transdanubia and its Role in the Central European Neolithic Transition (The Szentgyörgyvölgy-Pityerdomb Settlement) (Archaeological Institute of the Hungarian Academy of Science, Budapest, Hungary, 2004).
5. J. Pavúk, in LBK Dialogues. Studies in the Formation of the Linear Pottery Culture, A. Lukes, M. Zvelebil, Eds. (Archeopress, Oxford, 2004), pp. 71-82.
6. C. Renfrew, Archaeology and Language: The Puzzle of Indo-European Origins (Cape, London, 1987).
7. P. Bogucki, in Europe's First Farmers, T. D. Price, Ed. (Cambridge Univ. Press, Cambridge, 2000), pp. 197-218.
8. A. J. Ammermann, L. Cavalli-Sforza, The Neolithic Transition and the Genetics of Populations in Europe (Princeton Univ. Press, Princeton, NJ, 1984).
9. A. Whittle, Europe in the Neolithic. The Creation of New Worlds (Cambridge Univ. Press, Cambridge, 1996).
10. D. Gronenborn, Before Farming (online version April 2004).
11. M. Zvelebil, in LBK Dialogues. Studies in the Formation of the Linear Pottery Culture, A. Lukes, M. Zvelebil, Eds. (Archaeopress, Oxford, 2004), pp. 183-205.
12. G. Barbujani, D. B. Goldstein, Annu. Rev. Genomics Hum. Genet. 5, 119 (2004).
13. L. Chikhi, G. Destro-Bisol, G. Bertorelle, V. Pascali, G. Barbujani, Proc. Natl. Acad. Sci. U.S.A. 95, 9053 (1998).
14. L. Chikhi, R. A. Nichols, G. Barbujani, M. A. Beaumont, Proc. Natl. Acad. Sci. U.S.A. 99, 11008 (2002).
15. M. Richards et al., Am. J. Hum. Genet. 67, 1251 (2000).
16. I. Dupanloup, G. Bertorelle, L. Chikhi, G. Barbujani, Mol. Biol. Evol. 21, 1361 (2004).
17. O. Semino et al., Science 290, 1155 (2000).
18. L. Simoni, F. Calafell, D. Pettener, J. Bertranpetit, G. Barbujani, Arn. J. Hum. Genet. 66, 262 (2000).
19. A. Torroni et aL., Am. J. Hum. Genet. 62, 1137 (1998).
20. G. Barbujani, G. Bertorelle, L. Chikhi, Am. J. Hum. Genet. 62, 488 (1998).
21. M. Currat, L. Excoffier, Proc. Biol. Sci. 272, 679 (2005).
22. Materials and methods are available as supporting material on Science Online.
23. A. Röhl, B. Brinkmann, L. Forster, P. Forster, Int. J. Legal Med. 115, 29 (2001).
24. R. Villems, unpublished data (Estonian Biocentre Database 2005).
25. See www.ncbi.nlm.nih.gov/Genbank/index.html.
26. M. Hofreiter, V. Jaenicke, D. Serre, A. A. Haeseler, S. Pääbo, Nucleic Acids Res. 29, 4793 (2001).
27. M. T. Gilbert et al., Am. J. Hum. Genet. 72, 32 (2003).
28. L. Forster, P. Forster, S. Lutz-Bonengel, H. Willkomm, B. Brinkmann, Proc. Natl. Acad. Sci. U.S.A. 99, 13950 (2002).
29. R. A. Bentley et al., Curr. Anthropol. 43, 799 (2002).
30. F. X. Ricaut, C. Keyser-Tracqui, J. Bourgeois, E. Crubezy, B. Ludes, Hum. Biol. 76, 109 (2004).
31. S. Anderson et al., Nature 290, 457 (1981),
32. We thank the following for providing samples: V . Dresely, H. Meller, C.-H. Wunderlich, M. Porr, U. Müller, and T. Autze (Landesamt für Archäologie Sachsen-Anhalt, Halle/Saale, Germany); J. Wahl (Landesdenkmalamt Baden-Württemberg, Konstanz, Germany); H. Bruchhaus (Friedrich Schiller University Jena, Jena, Germany); R. Krause (Landesdenkmalamt BadenWürttemberg, Esslingen, Germany); M. Teschler-Nicola (Department of Anthropology, Natural History Museurn, Vienna, Austria); M. Grünewald (Museum Andreasstift, Worms, Rheinland-Pfalz, Germany); I. Pap and Z. Guba (Hungarian Natural History Museum, Budapest, Hungay); and J. Lüning (University of Frankfurt). We also thank A. Linderholm for primer design and M. Forster for editorial comments. Research grants were provided by the Bundesministerium für Bildung und Forschung.

Supporting Online Material

Www.sciencemag.org/cgi/content/full/310/5750/1016f DC1
Materials and Methods
Figs. 51 and 52
Tables S1 to S5
References and Notes

11 August 2005; accepted 10 October 2005
$10.1126 /$ science. 1118725

Photosynthetic O_{2} Formation Tracked by Time-Resolved X-ray Experiments

M. Haumann,* P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau*

Abstract

Plants and cyanobacteria produce atmospheric dioxygen from water, powered by sunlight and catalyzed by a manganese complex in photosystem II. A classic S-cycle model for oxygen evolution involves five states, but only four have been identified. The missing S_{4} state is particularly important because it is directly involved in dioxygen formation. Now progress comes from an x-ray technique that can monitor redox and structural changes in metal centers in real time with 10 -microsecond resolution. We show that in the O_{2}-formation step, an intermediate is formed-the enigmatic S_{4} state. Its creation is identified with a deprotonation process rather than the expected electron-transfer mechanism. Subsequent electron transfer would give an additional S_{4}^{\prime} state, thus extending the fundamental S-state cycle of dioxygen formation.

In plants, algac, and cyanobacteria (blucgreen algae), both electrons and protons are extracted from water molecules in a lightdriven process denoted as photosynthetic water oxidation (1, 2). Atmospheric dinxygen $\left(\mathrm{O}_{2}\right)$ is formed as a by-product. The reactions lcading to O_{2} formation procecd at a tetramanganese complex bound to the proteins of photosystem II (PSII) and involve a nearby tyrosine radical ($\mathrm{Y}_{\%}{ }^{\circ}$). There has been cxeiting progress toward elueidating the strueture of PSC (3-6), including a first crystallographic model of the manganese complex (5), but the mechanism of O_{2} formation has remained obscurc.

Since 1970, the paradiem for understanding O_{2} cvolution has been the S -state cycle proposed by Bessel Kok (7). This modcl involves five oxidation states ($\$$ states) of the PSII donor side. Four of these are stable for scveral scconds (S_{0}, S_{1}, S_{2}, and S_{2}) and have been characterized, but evidence for an S_{4} intemediate is lacking. In the S-cyele miodel, O_{2} formation requires successive absorption of four light quanta that can be provided by short flashes of light. By driving electron transfer from donor to aeceptor side of PSII. cach flash initiates an S-state transition until the S_{4} state is reached (Fig. 1). Subsequently, dioxygen is released. The S_{0} state is concomitantly formed, as the previously accumnlated oxidizing equivalents are used for $\mathrm{O}-\mathrm{O}$ bond formation. The elusive S_{1} state is a transient-

[^10]ly formed intermediate of O_{2} formation in the $\mathrm{S}_{3} \Rightarrow \mathrm{~S}_{0}$ transition. It is panticularly important becanse it represents the starting point for $\mathrm{O}-\mathrm{O}$ bond formation. Because the S_{1} state is dark-stable (ground state), the first four laser flashes drive the tannsitions $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}, \mathrm{~S}_{2} \rightarrow \mathrm{~S}_{3}, \mathrm{~S}_{3} \rightarrow \mathrm{~S}_{0^{-}}$and $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$. D Doxygen is fommed on the third tlash in the $S_{3} \Rightarrow S_{0}$ transition, but with the lack of identification of an S_{1} intermediate, this crucial transition is poorly understood.

Recently, the O_{2}-fomation step in PSC from cyanobacteria was inhibited by high oxygen pressure and, on the basis of ultraviolet absorption (UV) changes, it was proposed that an intermediate state had been stabilized (i). Pitfalls of this elcgant experiment are the uncertain role of the proposed intermediate at ambient oxygen pressure and the unclear relation between IJV absorption changes and the redox state of the PSII manganese complex. Instead of attempting to trap intermediates by inhibiting dioxygen formation, we took the course of monitoring the redox processes at the fully functional manganese complex in real time by time-resolved x-ray absorption speetroscopy (XAS). We investigated highly active PSII in its native membrane environment at ambient oxygen pressure and temperature and were able to identify the enigmatic S_{1} state formed before O-O bond fommation. In addition, we propose an cxtension of the classic S-state cycle (Fig. 1).

XAS at the K cdge of manganesc probes changes in oxidation state and local structure specifically for the x-ray absorbing Mn ions $(9,10)$. Thus, time-resolved XAS is ideal for monitoring the kincties of the individual steps in the catalytic cycle of the PSIl manganese complex. XAS experiments involving a freeze-guench technique have been used to study alcohol dehydrogenase intermediates with a time resolution of $3 \mathrm{~ms}(1 /, 12)$. Tracking the faster S-state

Fig. 1. Extension of the classic S-state cycle of photosynthetic oxygen evolution. The classic 5cycle model has been proposed by Kok (7) on the basis of the flashnumber dependence of the O_{2} yield that was first observed by joliot and Joliot (26). The oxygenevolving complex (OEC) at the PSII donor side comprises a manganese-calcium complex (4 Mn and 1 Ca) and its protein environment. Often also a nearby tyrosine $\left(Y_{z}\right)$ is included as an integral part of the OEC $(1-6)$. Driven by the sequential absorption of four light quanta, which in the present study were provided by four laser flashes, the OEC is stepped through its reaction cycle. After absorption of a photon, a chlorophyll cation ($\mathrm{P}_{680}{ }^{-}$) is formed, which oxidizes Y_{Z}. The tyrosine radical $\left(Y_{Z}{ }^{\circ}\right)$ then extracts one electron from the Mn complex. The S_{1} state is dark-stable; S_{2} and S_{3} are formed by one and two light-driven oxidation steps, respectively. The third photon induces the $S_{3} \rightarrow S_{0}$ transition and dioxygen is released; the fourth photon closes the cycle. Proton release (27) not representing a distinct, rate-limiting step has been omitted. Existence and formation rate of the S_{1} state are uncovered in the present investigation. The S_{4} intermediate is not formed by electron transfer to $Y_{Z}{ }^{*}$ but by a deprotonation reaction. In S_{1}, four oxidizing equivalents have been accumulated by the OEC, including $Y_{z}{ }^{*}$. The classic S-state cycle is extended by the S_{1}^{\prime} state that represents a hypothetical intermediate in which four electrons have been extracted from the Mn complex, including Mn ligands and the two substrate water molecules.

REPORTS

transitions of the PSII manganese complex required an improvement in time resolution by more than two orders of magnitude. On the basis of our studies of the semistable S states by XAS at room temperature [$/ 13 / 6)$: for the first flash-andfreeze study, see (17)], we have developed an approach ($/ 6$) that makes possible the direct observation of S-state tansitions by $X \wedge S$.

Facilitated by the high flux and stability of the x-ray beam at a third-generation synchrotron (European Synchrotron Radiation Facility, beamline ID26, Grenoble, france), we could follow changes in the Mn x-ray tluorescence after laser-flash illumination of PSII with a time resolution of $10 \mu \mathrm{~s}$ (Fig. 2). At an excitation energy of 6552 cV . for $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$ (first flash) and $S_{2} \rightarrow S_{3}$ (second flash) the exponential absorption deerease indicated oxidation of the Mn complex by the tyrosine radical $Y_{Z}{ }^{*}$ with halftimes of $70 \mu \mathrm{~s}$ and $190 \mu \mathrm{~s}$, respectively; for $S_{0} \rightarrow S_{1}$ (founth flash), the $t_{1: 2}$ was ≤ 30 ب.

For $\mathrm{S}_{3} \Rightarrow \mathrm{~S}_{0}$ (third flash), the laser flash induced ant absorption inercase due to Mn reduction by the substrate water $\left(\mathrm{t}_{1 / 2}=\right.$ 1.1 ms): however, this was preecded by a lag phase of about $250 \mu \mathrm{~s}$ (Fig. 2). This lag phase suggested a kinctically resolvable intermediate. IIowever, for transients collected at 6552 cV , it could not be uthambiguously assigned to an intemediate in the $S_{3} \Rightarrow S_{0}$ transition. An absorptionchange contribution from a minor fiaction of PSIl that undergoes the $S_{2} \rightarrow S_{3}$ transition on the third flash (due to PSII that did not turn over on the first laser flash, the socalled "misses") might mimic a lag phase. A time-resolved XAS experiment at 6556 eV clarified the situation because at this energy, no change in the x-ray absorption is observed for $\mathrm{S}_{2} \rightarrow \mathrm{~S}_{3}$ (15). A sizable lag phase was still present (tig. 3), proving the existence of a kinetically resolvable intermediate in the transition from the $S_{3} Y_{Z}$. to the $\mathrm{S}_{6} \mathrm{Y}_{\%}$ state. The intennediate is formed before the Mn -reducing/ O_{2}-forming step and thus represents the long-scarchedfor S_{4} state (SOM Text). Two advantages of the XAS approach facilitated the discovery of S_{4}. First, in contrast to previous studics that used visible light instead of x-rays to probe reactions in PSII, absolute manganese specificity is ensured. Sccond, the trace collected at an isosbestic point of the $S_{2} \rightarrow S_{3}$ transition (6556 cV) removes the ambiguities due to imperfect turnover on the previous S-state transition. Of note is that the predicted peroxidie S_{2}^{*} intermediate (8) was not observed at ambient oxygen pressure. The reaction sequenee $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2} * \rightarrow \mathrm{~S}_{0}$ could lead to a biphasic absorption increase on the third flash
in the time-resolved experiment at 6552 eV , but figs. 2 and 3 indicate monophasic Mn reduction.

Three observations enable us to identify the chemical nature of the S_{4} intermediate: (i) Fomation of a Mn -oxo species $\left(\mathrm{Mn}^{V}=\mathrm{O}\right.$,

Fig. 2. Oxidation and reduction of the Mn complex of PSII monitored by time-resolved x-ray measurements. Nanosecond flashes of green laser light initiated the S-state transitions. For 5 ms before and 15 ms after each flash, the protein samples were exposed to x-rays of 6552 eV . The time course of the Mn K_{18} fluorescence was recorded, because the intensity of the x-ray fluorescence measures the probability for x-ray absorption at the chosen excitation energy [normalization of $\Delta F(t)$ to an edge-jump of unity as described in (15)]. The time resolution was $10 \mu \mathrm{~s}$ per data point; five data points were averaged for the third-flash data. At 6552 eV , oxidation/reduction of the PSII manganese complex results in decrease/increase of $F(\mathrm{t})$ (fig. 51). Monoexponential (first and second flashes) or biexponential (third and fourth flashes) simulations led to the solid lines and the indicated halftimes that correspond to the following first-order rate constants (in s^{-1}): $9.9 \times 10^{3}\left(S_{1} \times 5_{2}\right), 3.6 \times 10^{3}$ $\left(5_{2} \rightarrow 5_{3}\right)$, 6.3×10^{2} (reduction on $\left.5_{3} \rightarrow 5_{0}\right)$, and $\geq 2 \times 10^{4}\left(S_{0} \rightarrow S_{1}\right)$.

Fig. 3. Intermediate formation in the oxygen-evolving $5_{3} \rightarrow 5$ transition induced by the third laser flash. In (A), x-ray fluorescence changes, ΔF, are shown for x-ray excitation at 6556 eV . At this energy, ΔF is zero for the $\mathrm{S}_{2}>\mathrm{S}_{3}$ transition (15), as demonstrated in (B). (The minor second-flash change visible in (B) is due to the 14% of PSII that "missed" the first flash and therefore undergoes the S_{1}, S_{2} transition on the second flash.) Thus, at an excitation energy of 6556 eV , the lag phase of -250 $\mu \mathrm{s}$ duration can be unambiguously assigned to intermediate formation; correction for miss events on preceding flashes is not required. In (C), the x-ray fluorescence transient measured at 6552 eV was corrected for miss contributions leading to the same lag phase behavior as observed at 6556 eV . For the corrected transient shown in (C), the logarithmic plot in (D) demonstrates the duration of the lag phase and the monophasic Mn reduction thereafter. A logarithmic plot for the transient in (A) yielded the same picture (fig. S4). In (E), a transient measured at 6541.5 eV (pre-edge fea-
ture) is compared to the time course expected for Mn-O formation (fig. 55). The smooth lines in (A), (C), and (E) were obtained by simulations for a consecutive reaction scheme with $k_{1}-3.3 \mathrm{~ms}^{-1}$ and $k_{z}-0.62 \mathrm{~ms}{ }^{1}$.

B

Fig. 4. Energetic (A) and mechanistic (B) schemes for 5_{4} formation in the $5_{3} \rightarrow 5_{0}$ transition. Three steps are considered in the mechanistic model shown in (B): (1) Absorption of a photon is followed by Y_{z} oxidation within $<1 \mu \mathrm{~s}$, a process coupled to a proton shift within the hydrogen bond to a histidine residue (His190 of the D1 protein) (28-30). (2) The positive charge stemming from Y_{Z} oxidation promotes, with a halftime of about 200
$\mu \mathrm{s}$, proton shifts and deprotonation of Arg357 of the CP43 protein. This assignment of the deprotonating group is tentative, but plausible (23). The proton is moving in a bucket-brigade-type mechanism along the proton path identified in (5) toward the lumenal surface. 5_{4} formation by deprotonation of the Mn complex may enable the subsequent reaction steps in two ways. (i) The redox potential of the Mn complex is lowered, facilitating electron transfer to $Y_{z}{ }^{*}$ (ii) The deprotonated group acts as a proton acceptor in the 0 -O bond formation step (25). (3) S_{1} formation is followed by electron transfer to $Y_{Z}{ }^{*}$. This process formally corresponds to formation of the S_{4} state in Fig. 1 but is kinetically indistinguishable from Mn reduction and O_{2} formation (identical halftimes of $\sim 1.1 \mathrm{~ms}$).
oxygen connected by a double bond to fivefold oxidized manganese) before the wateroxidation step has been proposed [e. g., in (/8)], but this possibility can be excluded because it would give a tramsient rise of the pre-cdge amplitude at 6541.5 eV , which is not observed (Fig. 2E). (ii) The same lag-phase behavior is observed throughout the edge region (fig. S6), indicating S_{4} formation without Mn oxidation or structural changes of the Mn complex. The lag phase is also shorter thate the millisecond halftime of electron transfer to $Y_{Z}(19,20)$, which matehes the $t_{1 / 2}$ of Vn reduction. Thus, the oxidation states of the Mn complex and of Y_{Z} ' remain unchanged upon S_{1} fomation. (iii) We measured recombination tluorescence emitted by the chlorophyll antenna of PSII and show that the Gibbs free energy of S_{4} formation is $p H-d e p e n d e n t$ and cxhibits an $\mathrm{II}_{2} \mathrm{O} \mathrm{D}_{2} \mathrm{O}$ exchange effect (figs. S 7 and S 8). The tennperature dependenee indicates that S_{4} fomation is entropically diven, as predicted for proton release into the bulk-phase water $(\Delta G=-0.1 \mathrm{eV}$ or $-10 \mathrm{~kJ} / \mathrm{mol}$ at pII 6.4 and $25^{\circ} \mathrm{C}, \Delta / t-0.1 \mathrm{cV} ; 7 \Delta S^{\prime}-0.2$ $\mathrm{eV})$. An S_{4} formation by deprotonation and proton release into the bulk-phase watcr can explain the recombination-fluorescence results as well as the x-ray absorption lag. The x-ray absorption is increasing with the onset of Mn reduction after deprotonation of a base close to the Mn complex. This eonjecture is consistent with proton-release
measurements (21) and electrochromism studies (22).

On the basis of the above findings, we do not identify S_{4}-state formation with clectron transfer firm the Vin complex to Y_{Y}, as has been proposed. but with the formation of a base B by a deprotonation process. Crystallographic data facilitates a tentative attribution of B to $\operatorname{Arg} 357$ of the CP43 protein (23) (fig. 4): direct deprotonation of substrate water also is conceivable.

Classical electron transfer (24) is not directly coupled to protonation state changes of donor (reductant) or acceptor (oxidatt). IIydrogen-atom tramsfer is the joint movement of proton and electron to an II-atom acceptor (or abstractor). Fommation of a Mn^{V} oxo species $\left(\mathrm{Mn}^{v}=O\right)$, in the S_{4} state, by II-atom tramster fiom a Mn^{V}-hydroxo (Mn^{N} $\mathrm{OII})$ to the tyrosine radical $\left(\mathrm{Y}_{\mathrm{Z}} \rightarrow_{\mathrm{Z}} \mathrm{II}\right)$ has been a centerpicec of an influcntial hypothesis on photosynthetic water oxidation ($/ h^{\prime}$). Here, we report cvidence for an alternative mechamism, a "proton-first" electron transfer, where the oxidation of Y, induces likely electrostatically-a deprotonation reaction that is a prerequisite to the subsequent election transfer to $\mathrm{Y}_{\mathrm{Z}}{ }^{*}(25)$.

Our identification of S_{1} formation as a deprotonation process bears mechanistic implications and will spur further investigations on this key step in photosynthetic water oxidation. It also leads to an extension of the S-state cycle because the deprotonation must be followed by electron
transfer to $Y_{Y}{ }^{*}$, thus implying an S_{\cdot}^{\prime} state (Fig. 1). This time-resolved x-ray experiment takes us a step closer to the goal of watching biological function in real time.

References and Notes

1. Biochim. Biophys. Acta 1503, Special issue on Photosymthetic Water Oxidation (Elsevier, Amsterdam, 2001).
2. J. Barber, Biochim. Biophys. Acta 1655, 123 (2004).
3. A. Zouni et at., Nature 409, 739 (2001).
4. N. Kamiya, J. R. Shen, Proc. Nati. Acad. Sci. U.S.A. 100, 98 (2003).
5. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Scjence 303, 1831 (2004).
6. A. W. Rutherford, P. Faller, Trends Biochem. Sci. 26, 341 (2001).
7. B. Kok, B. Forbush, M. McGloin, Photochern. Photobiol. 11, 457 (1970).
8. J. Clausen, W. Junge, Nature 430, 480 (2004).
9. V. K. Yachandra, Methods Enzymol. 246, 638 (1995).
10. H. Dau, P. Liebisch, M. Haumann, Anal. Bioanal. Chem. 376, 562 (2003).
11. O. Kleifeld, A. Frenkel, J. M. Martin, I. Sagi, Nat. Struct. Biot. 10, 98 (2003).
12. J. E. Penпer-Hahn, Nat. Struct. Biof. 10, 75 (2003).
13. C. Meinke, V. A. Sole, P. Pospisil, H. Dau, Biochemistry 39, 7033 (2000).
14. M. Haumann, M. Grabolle, T. Neisius, H. Dau, FEBS Lett. 512, 116 (2002).
15. M. Haumann et af., Biochemistry 44, 1894 (2005).
16. M. Haumann, C. Müller, P. Liebisch, T. Neisius, H. Dau, J. Synchrotron Radjat. 12, 35 (2005),
17. T. Ono et af., Science 258, 1335 (1992).
18. C. W. Hoganson, G. T. Babcock, Science 277, 1953 (1997).
19. G. T. Babcock, R. E. Blankenship, K. Sauer, FEBS tett. 61, 286 (1976).
20. M. R. Razeghifard, C. Klughammer, R. J. Pace, Biochemistry 36, 86 (1997).
21. M. Haumann, W. Junge, Biochemistry 33, 864 (1994).
22. F. Rappaport, M. Blanchard-Desce, J. Lavergne, Biochim. Biophys. Acta 1184, 178 (1994).
23. J. P. McEvoy, G. W. Brudvig, Phys. Chem. Chem. Phys. 6. 4754 (2004).
24. R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 , 265 (1985).
25. H. Dau, M. Haumann, Photosynth. Res. 84, 325 (2005).
26. P. Joliot, A. Joliot, Biochim. Biophys. Acta 153, 625 (1968).
27. J. Lavergne, W. Junge, Photosynth. Res. 38, 279 (1993). 28. R. Ahlbrink et at., Biochemistry 37, 1131 (1998).
28. F. Mamedov, R. T. Sayre, S. Styring Biochemistry 37, 14245 (1998).
29. A. M. Hays, I. R. Vassiliev, J. H. Golbeck, R. J. Debus, Biachemistry 38, 11851 (1999).
30. The x-ray experiments were carried out at the experimental station ID26 of the European Synchrotron Radiation Facility (ESRF) (Grenoble, France). We thank T. Neisius, S. Eeckhout, and P. Glatzel (all of ESRF), who contributed significantly to the preparation of the x-ray experiment, and P. Loja (of our research group) for her important contributions to XAS data collection. Financial support by the Deutsche Forschungsgemeinschaft (DFG) (Collaborative Research Center SFB 498, projects C6 and ©8) and the Bundesministerium für Bildung und Forschung (BMBF) (grant O5KS1KEA/6) is gratefully acknowledged.

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5750/1019/ DC1
Materials and Methods
SOM Text
Figs. S 1 to 58
Table 51
References

18 July 2005; accepted 23 September 2005
10.1126/science. 1117551

Small-Molecule Inhibition of TNF- α

Molly M. He, ${ }^{1}$ Annemarie Stroustrup Smith, ${ }^{2}$ Johan D. Oslob, ${ }^{1}$ William M. Flanagan, ${ }^{1}$ Andrew C. Braisted, ${ }^{1}$ Adrian Whitty, ${ }^{3}$ Mark T. Cancilla, ${ }^{1}$ Jun Wang, ${ }^{4}$ Alexey A. Lugovskoy, ${ }^{3}$ Josh C. Yoburn, ${ }^{1}$ Amy D. Fung, ${ }^{1}$ Graham Farrington, ${ }^{3}$ John K. Eldredge, ${ }^{3}$ Eric S. Day, ${ }^{3}$ Leslie A. Cruz, ${ }^{5}$ Teresa G. Cachero, ${ }^{3}$ Stephan K. Miller, ${ }^{3}$ Jessica E. Friedman, ${ }^{3}$ Ingrid C. Choong, ${ }^{1}$ Brian C. Cunningham ${ }^{1 *}$

Abstract

We have identified a small-molecule inhibitor of tumor necrosis factor α (TNF- x) that promotes subunit disassembly of this trimeric cytokine family member. The compound inhibits TNF- α activity in biochemical and cell-based assays with median inhibitory concentrations of 22 and 4.6 micromolar, respectively. Formation of an intermediate complex between the compound and the intact trimer results in a 600 -fold accelerated subunit dissociation rate that leads to trimer dissociation. A structure solved by x-ray crystallography reveals that a single compound molecule displaces a subunit of the trimer to form a complex with a dimer of TNF-a subunits.

Direct inhibition of TNF- α by the commercial biological agents ctancrecpt (linbrel, Amgen Incorporated, Thousand Oaks, CA, Wyeth Pharmacenticals, Collcgeville. PA), infliximab (Remicade, C'entocor, IIorsham, PA, ScheringPlough. Kenilworth, N.I), and adalimumab (IIumira, Abbott Laboratories, Abbott Park, (L) has produeed significant advances in rheumatoid anthritis treatment and validated the extracellular inhibition of this proinflanmatory cytokine as an effective therapy. However, despite considerable incentives, viable leads for analogous small-molecule inhibitors of TNF-a have not been reported (I). Thus far, small-molecule antagonists of TNF-X activity have typically been limited to inhibitors of the processing enzyme TAC'E (2). uncharacterized inhibitors of TNF-a: cxpression (3-7), uncharacterized inhibitors of TNF-d cell-bascd assays (8,9), and other intracellular pathway inhibitors that antagonize nuelcar factor k B ($\mathrm{NH}^{\circ}-\mathrm{k} \cdot \mathrm{B}$), activating protein 1 (APl), or $\mathrm{c}-\mathrm{Jun} \mathrm{N}$-temminal kinase (JNK) p38 signal transcuction. Although progress has been made in developiney small molecules capable of disrupting such protein-protein

[^11]interactions, this process remains a very difficult challenge $(10, / 1)$.

We discovered a compound (Fig. 1A) eomposed of trifluomenthylphenyl indole and dimethyl chromone moieties linked by a dimethylamine spacer that inhibited TNF-a receptor binding (12). Potency measurements showed a median ithibitory concentration ($\mathrm{IC}^{\prime}{ }_{50}$) of $22 \mu \mathrm{VI}$ for inhibiting in vitio TNF receptor 1 (INFR 1) binding to INF 'x (F ig. 1B). Comparable potency was observed for inhibiting 'TNF-a-mediated stimulation of inhibitor of $N F-\kappa B$ ($I \kappa B$) degradation in HeLa cells but not for orthogonal interleukin1β (IL- 1β)-mediated stimulation of the same pathway (Fig. 1C).

The x-ray crystal structure was solved for TNF-q compound complex crystals gener-
ated from an equimolar mixture of TNF- α and compound in solution (table Sl). Prior cfforts to produce diffraction-quality co-crystals by soaking compound into native TNF-x crystals had failed and often resulted in the cracking of those erystals. Molecular replacenent with the coordinates from a single subunit of the liNf.pdb structure ($/ 3$) readily solved the structure after failures with intact trimer coorditates. This phenomenon was explained when it was revealed that the compound had displaced one of the subunits from the INF - 0 trimer (Fig. 2A). The resulting TNF-o dimer retained the same basie structural subunit fold as the native trimer, but the angle between the subunits within the dimer was slightly widened (tig. 2B). Clear x-ray density showed the compound bound within a shallow poeket (Fig. 2C) and contacting residucs firm each subunit of the TNF- α dimer (table S2). Renarkably, these contact surfaces are found completely buried within the subunit interfaces of the intact TNF-oy trinner erystal structure.

The compound in this structure is in a compact conformation, with the trifluoromethylphenyl indole and dimethyl ehromone moieties folded back upon one another. The binding surface for the compound on the INF-o dimer is composed of 16 contact residues, including 6 tyrosinc residues (Fig. 21)). Ninc are presented from chain A $\lceil 557, Y 59, \mathrm{~S} 60$, Q61, Y119, L120, G121, Cil22, and Y151 (14)]. The remaining seven are a subset of these residucs presented from chain B (L57', Y59 , S60, Y119', L120, G121 , and Y151). The identity of the residues that oecupy these positions in other timeric cytokine family menbers is shown in table S 2 . Tyr ${ }^{11^{19}}$ is notable in being located close to the threefold symmetry axis of the TNF'-x trimer and its making contact with its counterparts from the other monomeric subunits. Its chi-l angle ro-

Fig. 1. (A) Chemical structure of the small molecule TNF-a inhibitor. See (12) for synthetic route used. (B) Compound inhibition of TNF- α binding to TNFR1 in vitro. An ELISA (12) was used to measure inhibition of solution-phase TNF-R1 horseradish peroxidase conjugate binding to biotinylated TNF- α immobilized on a strepavidin-coated microtiter plate by serial dilutions of compound. The solid line represents a four-parameter curve fit (20) that yielded an IC_{50} value of $22 \mu \mathrm{M}$. (C) Compound inhibition of TNF- α induced IאB- α depletion in HeLa cells. Cells were treated with sufficient TNF-x or IL-1 β to give an 80% of maximal ${ }^{\prime} \kappa \mathrm{B}-\mathrm{x}$ depletion response after a $30-\mathrm{min}$ exposure (0.4 and $0.04 \mathrm{ng} / \mathrm{ml}$, respectively), as measured in an assay of cell lysates (12). Solid circles show that compound addition inhibits this TNF-a-induced IאB- α depletion and yields an IC_{50} value of $4.6 \mu \mathrm{M}$. Open circles show that compound addition does not affect orthogonal IL1β-induced IאB- α depletion. Error bars indicate standard deviations for triplicate measurements.

Fig. 2. (A) X-ray crystallography structure of the TNF- α dimer-compound complex. (B) Shift in subunit orientation within the TNF- α dimercompound complex. Superposition of the TNF- α trimer structure (gray) with the TNF- α dimer-compound complex structure (yellow-blue) shows a slight widening in the angle between the subunits at the compound binding site. (C) View of compound binding site on the TNF- α dimer. Image shows the $2 F_{o}-F_{c}$ electron density omit map of the compound (contoured to 1σ) calculated from phases derived from refinement of the structure without compound (mesh). The binding pocket can be seen to comprise residues from both chain A (yellow) and chain B (blue). (D) β sheet secondary structure around the compound binding site and the location of six tyrosine residues that contact the compound. The tyrosines are colored-coded with Tyr^{59} (tan), Tyr ${ }^{151}$ (purple), and Tyr^{119} (blue) residues being presented from both chain A and chain B.

Fig. 3. Displacement of subunits from the TNF-a trimer by compound. (A) Singly biotinylated ${ }^{3} \mathrm{H}$ -TNF- α immobilized on a SPA flash plate was exposed to a titration of compound (12). Graph shows increasing losses of the immobilized TNF label from the surface (y axis) after exposure to increasing compound concentrations for 60 min . Losses measured before washing away dissociated label are shown as open circles, and those after washing are shown as solid circles. (B) Singly biotinylated but unlabeled TNF-a immobilized on a strepavidin-coated microtiter plate was likewise exposed to a titration of compound as described (12). The microtiter plates were then washed, and functional TNF- α trimer measured by ability to bind TNFR1 peroxidase conjugate. Graph shows increasing losses of the binding competent TNF-ct (y axis) upon 60 min of exposure to increasing concentrations of compound ($\left(\mathrm{C}_{50}-13 \mu \mathrm{M}\right.$). Error bars indicate standard deviations for triplicate measurements.
tates 138° and 124° (for chains \triangle and B, respectively) to accommodate compound binding and 'TNF'- dimer formation. Other side chain movements are relatively minor. In spite of burying about $330 \AA^{2}$ (15) of protein surface, no intermolecular hydrogen bonds or salt bridges are formed suggesting that the interaction is largely hydrophobic and shape-driven.

Becanse the eompound eontacted residues that are buried in the TNF-a trimer, we
cxamined whether it could dissociate the timer under the conditions used for the in vitro activity measurements. To this end, we immobilized singly biotinylated ${ }^{3} \mathrm{II}-\mathrm{TNF}-\alpha$ trimer onto a seintillation proximity assay (SPA) microtiter plate. Addition of the compound at coneentrations that inhibit TNFR1 binding induced shedding of subunits from the TNF-a trimer (Fig. 3N). Lixperiments measuring the decrease in receptor
binding after washing away dissociated subunits gave an C_{50} of 13 بM (Fig. 3B). This was reproducibly twotold more potent than the value when receptor was present along with the compound (Fig. 1B), consistent with the notion that [NFR] binding can stabilize TNF-a timer.

Because the erystal structure indicated that the compound should induce fommtion of TNF'-x dimer, we examined whethor this could be observed it solution. To this cnd, we used mass spectrometry to cxamine the oligomeric state of $I N F-x$ it the presence of the compound (12). Conditions were established that allowed the measurement of the noncovalently associated TNF- α triner (Fig. 4A). Compound addition under these conditions resulted in the conversion of $\mathrm{INF}-\mathrm{a}$ trimer to dimer (Fig. 4B). Additionally, about 20% of the TNF-a dimer observed existed as a complex with a single compound molecule, thereby reproducing the stoichionctry observed in the x-ray structure. Lastly, we performed hydrogen-deuterium cxchange experiments to check for the expected increase in exposed surface area per TNF-a subunit in the dimer form. Measurements showed that addition of compound

Fig. 4. Data showing compound-induced formation of TNF-cy dimer in solution. (A) Detection of TNF-o: oligomeric state by mass spectrometry. Spectrum is a deconvoluted neutral scale mass spectrum of noncovalent TNF-as trimer complex visualized as three peaks due to plus and minus N-terminal methionine heterogeneity of TNF-tx sample. The observed masses of 52,052, 52,182, and 52,312 daltons corresponds to the trimer complex containing either zero, one, or two subunits with N-terminal methionines, respectively. (B) Analogous spectrum of $10 \mu \mathrm{M}$ TNF-a incubated with 100 LIM 5P307. Masses at 34,704 and 35,252 correspond to noncovalent complex of TNF- α : dimer and TNF-x dimer-compound, respectively. (C) Increase in TNF-q exchangeable hydrogens induced by compound. Plot shows time course for hydrogen-deuterium exchange of $1 \mu \mathrm{M}$ TNF-ix dissolved into either $\mathrm{D}_{2} \mathrm{O}$ alone (open circles) or $\mathrm{D}_{2} \mathrm{O}$ plus $30 \mu \mathrm{M}$ compound (solid circles). Procedure was performed as described (12). Calculations of exposed surface area predict 88, 99, and 110 exchangeable hydrogens for each subunit within the TNF-c. trimer, dimer, and monomer structures, respectively (21, 22). (D) TNF-qu subunit dissociation rates in the presence and absence of compound. The relief of fluorescence homoquenching of 100 nM T7C-AF TNF- α after dilution in a 200 -fold excess of unlabeled TNF- α was used to monitor subunit disassociation from TNF- α trimer (solid circles). Nomlinear regression analysis using the appropriate kinetics equation (12) gave a calculated rate of $0.000093 \mathrm{~s}{ }^{1}$ per monomer dissociation event (solid circles). Addition of $30 \mu \mathrm{M}$ compound to the homoquenching assay accelerates the observed time course of fluorescence increase and yields a calculated rate constant of $0.059 \mathrm{~s}{ }^{1}$ per monomer dissociation event (solid triangles). Open circles show fluorescence in the absence of added unlabeled TNF- x . Error bars represent the standard deviation of triplicate measurements.
caused about 13 additional hydrogens per TNF-a to become surface-exposed (Fig. 4C). This number compares favorably with the 11 additional exchangeable hydrogens calenlated for the TNF-a dimer relative to the published TNF-a timer structure (12). These results suggest that the TNF- 0 dimer is more prevalent than TNF- α monomer (22 expected additional exchangeable hydrogens) under these conditions.

We eonsidered two possible models to explain how the compound acts to caluse formation of TNF'-x dinier. In the first, predissociation-dependent model, the compound functions passively by binding to and stabilizing the TNF- α dimer only after a TNF-a trimer subunit has spontancously dissociated. In the second, predissociationindependent model, the compound functions actively by interacting with the TNF-a timer to promote the dissociation of a subunit to form TNF- α dimer.

To discem which mechanism operates, we developed a sensitive fluorescence homoquenchingbased assay (16) to examine the kinetics of subunit dissociation from the TNF-ci timer. In this assiay, we monitored the decrease in fluorescein homoquenching that occurs when closely associated molecules become separated A TNF-a mutant (T7C) having a fiee thiol in the region of the disordered N termitms was covalently coupled to the 5 -iodowetamidoflourosecin $(5-\mathrm{AF})$ so that cach subunit of TNF-a trimer was tluorescently labeled. Binding analysis of this highly fluoresecnt adduct reagent (called $\mathrm{T} 7 \mathrm{C}-\mathrm{AF}$) showed it possessed the same affinity for TNFR1 as did unmodificd wild-type TNF- α.

Addition of the $17 \mathrm{C}-\lambda+$ reagent to a 200 fold excess of unlabeled TNF- α resulted in a time-dependent inerease in fluoreseence as dissociating T7C-AF subunits were replaced by subunits not fluoreseently tageed (fig. 41)). Fitting the resulting curves to the appropriate
kinetic equation (12) by nonlinear regression analysis allowed us to determine the dissociation rate of monomer subunits from the INF-x trimer to be 0.000093 s^{1}. The addition of $30 \mu \mathrm{M}$ compound resulted in a much more rapid subunit dissociation rate of $0.057 \mathrm{~s}^{-1}$, representing a 600 -fold acceleration from the spontancous dissociation rate of TNF-a (Fig. 4D). Additionally, time course cxperiments using the TNFR1 enzyme-litiked immunosorbent assay (ELISA) showed rapid INF-x inactivation eonsistent with these measurements (fig. S3). The highly accelerated dissociation rate indicates that the compound actively promotes subunit dissociation and functions through the predissociationindependent model deseribed previously. This finding implies that the initial step for inactivation is the binding of the compound to TNF- α timer to form an intermediate complex that undergocs aceelcrated subunit dissociation.

We found cwidence for compound association with intact timer fiom studies done at superphysiological INF-a conecntrations. Analysis by sedimentation equilibrium of a mixture of $45 \mu \mathrm{M}$ INF- x and $68 \mu \mathrm{M}$ compound was performed, and compound migration withitn that mixture was tracked by its absorbance at 310 mm . The compound migrated with an apparent molcenlar weight consistent with being bound to intact TNF- α trimer (fig. S4). Morcover measurements by tandem gel filtration and dynamic light scattering showed that 3 to $30 \mu \mathrm{M}$ TNF- 0 concentrations retained the molecular weight of trimer it the presenee of $30 \mu \mathrm{M}$ compound (table S3). Lastly, we showed that the intrinsic tryptophan fluorescence (ITH) of 0.5 to $5 \mu \mathrm{M}$ TNF-a was 85% quenched by addition of 50 uM compound, suggesting that the compound is bound in proximity to Trp^{28} and Trpp ${ }^{111}$ within the TNF-a trimer. Measurcments of the rate of restoration of TNF- σ ITF after a 10 -fold dilution of this quenched complex to a concentation well below the C_{50} of the compound showed that the effeet is reversible and that the dissociation rate of the compound from the TNF-a trimer is rapid (fig. S5).

Taken together, our results indicate that the eompound-associated INt'-a trimer predicted by the predissociation-independent model cxists and represents a more weakly associated oligomeric form than the fiee TNF- σ. trimer. Under lower physiologically relevant TNF-a concentrations, this proposed complex is highly unstable and rapidly inactivated by subunit dissociation. IIowever, at higher superphysiological I NF'-x coneentrations there is sufficient TNF-a present to stabilize compound-associated 'INF-6 trimer as the prevalent form at equilibrium.

The co-structure and mechanism of action of the TNF- α inhibitor described herein
demonstrates that small molecules that function by disupting tightly preassociated oligomeric proteins are feasible. Although small-molecule inhibitors that block dimer formation cxist for a number of intracellular homodimeric proteins (10./7), many may function through a predissociation-dependent mechanism. For example, an inhibitor (16,19) of inducible nitrous oxide synthase (iNOS) inhibits the intracellular association of iNOS monomers into enzymatically active iNOS dimer yet is inactive against isolated dimeric iNOS. [nhibitors of this type may have limited utility against extracellular preassembled multimeric proteins like INF-x that have very slow spontaneous subunit dissociation rates.

In contrast, the TNF- α inhibitor we describe binds to the intact biologically active tritner and acecerates subunit dissociation to rapidly inactivate the cytokine. Interestingly, this activity together with the co-structure of the TNF-a dimer compound complex suggests that the compound is able to aceess the nomally buried interior of TNF-a trimer. It is possible that the compound achieves this by exploiting an intrinsic dynamic breathing between the subunit interfaces that may oceur it solution-phase TNF-a thimer, but the precise mechanism by which the componnd functions remains to be elucidated. The results we have
described should enable the design of appropriate assays that may allow for the identification of potent small-molecule inhibitors that inactivate multimeric proteins via a rapid predissociation-independent subunit dissociation process.

References and Notes

1. M. A. Palladino, F. R. Bahjat, E. A. Theodorakis, L L Moldawer, Nat. Rev. Orug Discov. 2, 736 (2003)
2. J. I. Levin et al., Bioorg. Med. Chern. Lett. 11, 2189 (2001).
3. J. F. Cheng, A. Ishikawa, Y. Ono, T. Arrhenius, A. Nadzan, Bioorg. Med. Cherm. Lett. 13, 3647 (2003).
4. E. P. Sampaio, E. N. Sarno, R. Galilly, Z. A. Cohn, G. Kaplan. J. Exp. Med. 173, 699 (1991).
5. S. Niwayama et af., Bioorg. Med. Chem. Lett. 8, 1071 (1998).
6. S. Niwayama, B. E. Turk, J. O. Liu, f. Med. Chem. 39, 3044 (1996).
7. M. P. Clark et at., J. Med. Chem. 47, 2724 (2004).
8. R. W. Jackson, J. C. Tabone, J. J. Howbert, Bioorg. Med. Chem. Lett. 13, 205 (2003).
9. R. W. Jackson et al., Bioorg. Med. Chem. Lett. 12, 1093 (2002).
10. T. Berg, Angew. Chem. int. Ed. Engl. 42, 2462 (2003).
11. P. L. Toogood, f. Med. Chem. 45, 1543 (2002).
12. Materials and methods are available as supporting material on Science Online.
13. M. J. Eck, S. R. Sprang f. Biol. Chem. 264, 17595 (1989).
14. Single-letter abbreviations for the amino acid residues are as follows: G, Gly; L, Lys; $Q, G \ln ; 5$, Ser; and Y, Tyr.
15. For the two compounds (including hydrogens) within the unit cell surfaces, areas of $337 \AA^{\prime}$ and $315 \AA^{\prime}$ are calculated for an average of 326 I $11 \mathrm{~A}^{\prime}$ of surface contact area on the TNF-u dimer.

Structure of a V3-Containing HIV-1 gp120 Core

Chih-chin Huang, ${ }^{1}$ Min Tang, ${ }^{1}$ Mei-Yun Zhang, ${ }^{2}$ Shahzad Majeed, ${ }^{1}$ Elizabeth Montabana, ${ }^{1}$ Robyn L. Stanfield, ${ }^{4}$ Dimiter S. Dimitrov, ${ }^{3}$ Bette Korber, ${ }^{5}$ Joseph Sodroski, ${ }^{6}$ Ian A. Wilson, ${ }^{4}$ Richard Wyatt, ${ }^{1 *}$ Peter D. Kwong ${ }^{\mathbf{1 *}}$

The third variable region (V3) of the HIV-1 gp 120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp 120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp 120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of $V 3$ in HIV entry and neutralization.

The HIV envelope spike mediates binding to receptors and virus entry [reviewed in (1)]. The trimeric spike is composed of threc gpl20 exterior and three gop 41 tansmembrane envelope glyeoproteins. CD4 binding to gpl 20 it the spike induces confomational changes that allow binding to a corceeptor, either CCR 5 or CXCR4, which is required for viral entry (2 6). Snapshots of the gpl 20 entry mechatism have been visualized through crystal structures of unliganded and CD4-bound states (7,8). However, an essential component of the coreceptor
binding site, the third variable region (V3), has been absent from previous structural characterizations of the gpl 20 corc.

V3 typically consists of 35 amino acids (range 31 to 39) and plays a number of important biological roles 「reviewed in (9) \rceil. Not only is it critical for corcecptor binding, but it also detemnines which coreceptor, CXC'R4 or CCR5, will be used for entry (/O). In addition. V3 may interact with other elements in the wiral spike to control the overall sensitivity of the virus to neutralization (1I). Finally, immu-
16. B. C. Cunning ham et al., Science 254, 821 (1991).
17. K. J. Capps, J. Humiston, R. Dominique, I. Hwang, D. L. Boger, Bioorg. Med. Chem. Lett. 15, 2840 (2005)
18. E. Blasko et af., f. Biol. Chem. 277, 295 (2002).
19. K. McMillan et at., Proc. Natl. Acad. Sci. U.S.A. 97. 1506 (2000).
20. W. L. Delano, B. C. Cunningham, in Phage Display, T. Clackson, H. B. Lowman, Eds., vol. 266 of The Practical Approach Series (Oxford Univ. Press, New York, 2004), p. 85.
21. M. L. Connolly, f. Appt. Coyst. 16, 548 (1983).
22. R. Koradi, M. Billeter, K. Wuthrich, f. Mof. Graph. 14, 51 (1996).
23. X-ray crystallographic data were deposited in the Protein Data Bank under accession code 2AZ5. Compound libraries that led to the discovery of the TNF-c inhibitor were produced at Sunesis Pharmaceuticals by A. A. Virgilio. Crystal data collection was carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the U.S. Department of Energy, Office of Biological and Environmental Research, and by NIH, National Center for Research Resources, Biomedical Technology Program, and National Institute of General Medical Sciences.

Supporting Online Material

www.sciencemag.org/cgi/content/full/310/5750/1022/ DC1
Materials and Methods
Figs. S1 to S6
Tables S1 to S3

20 June 2005; accepted 14 October 2005
$10.1126 /$ science. 1116304
nization with IITV-1 envelope glycoproteins often elicits neutralizing responses directed primarily against V3 (12, 13).

The structure of V 3 in the context of core gpl20 bound to C'D4, described here, now reveals the entire coreceptor binding site. We propose that $\sqrt{ } 3$ acts as a molccular hook, not only for shaning coreceptor but also for modulating subunit associations within the viral spike. Its extended nature is compatible with the elicitation of an imnumodomitnant antiloody response.

The extreme glycosylation and confomational flexibility of gpl 20 inhibit crystallization. We used vaniational crystallization and various technologies adapted from structural genomics to obtain crystals suitable for x-ray structural analysis ($/ 4 / 6$). Constructs of the gp 120 core with V3 from three clade B isolates (HXBC 2 , JR-HL, and Y(12) were expressed in

[^12]
REPORTS

Drosophila S2 cells, and the deglycosylated, purified proteins were complexed with CD4 and a CD4-induced antibody (16). A total of 13 different complexes were screened robotically, and crystallization hits were optimized manually. The gpl 20 core with V3 from JR-FL $(17,18)$, when complexed to CD4 (twodomain) and the antigen-binding fragment (Fab) of the X5 antibody (19), formed hexagonal crystals that diffracted to approximately $3.5 \AA$ resolution with x-rays provided by an Advanced Photon Source undulator beam line (SER-CAT) (table S1). The structure was solved by molecular replacement (16) and is shown in Fig. 1.

As expected, the overall assembly of CD4, X5, and core gp120 resembled the previously determined individual structures of CD4 $(20,21)$ and of free X5 (22) as well as the complex of core gp 120 bound to CD4 $(8,23)$. For core gp120, some differences were observed in the variable loops and also at the N terminus, regions where variations in gp120 have previously been observed ($7,8,23,24$). Structural resemblance was maintained around the base of V3, indicating that the previous truncation ($7,8,23,24$) did not distort this region of the core. In X5, a large structural difference was observed for the third complementaritydetemmining loop of the X5 heavy chain (CDR H3). Comparison of the refined structures of free X5 (22) and bound X5 showed Co movements of u) to $17 \dot{\lambda}$. one of the largest induced fits observed for an antibody (fig. Sl).

The $g p l 20$ envelope protein is eomposed of inner and outer domains, named for their expected orientation in the oligomerie viral spike (8). V3 emanates fiom neighboring staves of the stacked double bartel that makes up the outer domain; it is almost 50 A long from the disulfide bridge at its base to its conserved tip, but is otherwise only 15 A wide and 5 A decp (fig. 2). Overall, it can be subdivided into three structural regions: a conscrved base, which forms an integral portion of the core; a flexible stem, which extends away from the corc; and a β-hairpin tip. In the crystal stucture, the flexibility and position of the $V 3$ tip may be influenced by a lattice contact, in which hydrogen bonds are made to the exposed backbone of the $V / 3 \beta$ ribbon between $\left[1 c^{307}\right.$ and Il^{309}. Tenmous side-chain eontacts are also observed for the retuming strand in the $V / 3$ sten with $X 5$, as well as with $V 4$ of a symmetry-related gip 120 molecule, but these sidechain contacts anc unlikely to influence its conformation.

Ficatures of gp 120 important for corcecptor bindiny have been mapped by mutagenesis to two regions: (i) the $V 3$ tip, and (ii) the gpl 20 core around the bridging sheet, the V3 base, and neighboring residues (2528). Analysis of these two regions on this new structure indicates that they are conserved in both seguence and structure (figs. S2A and S3).

Fig. 1. Structure of an HIV-1 gp 120 core with V3. The crystal structure of core gp120 (gray) with an intact V3 (red) is shown bound to the membrane-distal two domains of the CD4 receptor (yellow) and the Fab portion of the X5 antibody (dark and light blue). In this orientation, the viral membrane would be positioned toward the top of the page and the target cell toward the bottom.

The structural conservation of the V3 tip was surprising here in light of the apparent flexibility of the intervening stem, but we found the VB tip to be strikingly similar it the context of the core, in antibody-V3 peptide complexes, and as a frec peptide; such similarity is consistent with previous reports of recuming conformations for the $V / 3$ tip in antibodypeptide complexes (29). The structure shows that conserved regions important for coreceptor binding are separated by 10 to 20 A and by portions of the $V 3 \mathrm{stcm}$ with moderate to high seguence variation (fig. S2).
limerging data on the structures of the coreceptors indicate that the regions identified as being important for binding gpl 20 the coreceptor N terminus and the second extracellular loop may also be spatially separated (30). By integrating the two-site gpl20 binding site on the coreceptor with the twosite coreceptor binding site that we observe in the corc V3 gpl20 structure, we propose that the N teminus of the coreceptor reaches up and biths to the core and V3 base while the $V 3$ tip of gp 120 reaches down to interact with the sceond extracellular loop of the corcecptor (tig. 3B). Support for this model comes from several sources: (i) Biochemical studics show that the binditg of CCR5 N teminal peptides to gpl 120 is affected by gpl 120 alterations only on the core and around the base of V3 (28); and (ii) small-molecule inhibitors of HIV cntry that bith to the second extracellular loop of the coreceptor are observed to no longer affect mutant viruses with V3 truncations (3)).

Does binding of the V/3 tip to the eoreceptor initiate gr 41 -mediated confomational changes? Despite general tolerance of the $V 3$ stem to changes in seguence, there is less tolerance
for insertions or deletions than in other gpl 20 variable loops. We superimposed the core V3 structure on the modeled gp 120 core trimer that we previously obtained by optimization of guantifiable surface parameters (32). This trimeric model orients gel 20 in the context of both cell-surface CD4 and the target cell membranc. Such a supcrposition projects the highly conserved Pro-Gly of the V3 tip 30 A toward the target cell membranc (Fig. 3N).

Different coreceptors, primarily CXC'R4 or CCR5, can support HIV-1 entry. Sequence amalysis has defined an $11 / 25$ rule: If the 11 th or 25 th positions of $V 3$ are positively charged, viruses will use CXCR4; otherwise they use CCR5 (33). In addition, V3 sequences are more conserved for CCR5-using viruses (fig. S2). The structure shows that positions 11 and 25 (residues 306 and 322) are within the variable stem. They each project about the same distance away from the core but are separated by a Co distance of 17λ (fig. S2). This separation suggests that positions 11 and 25 recognize different portions of the corcceptor.

CD4 induces large conformational changes it gpl20. Beforc CD4 binding. V/3 may not protrude procisely as observed here for the CD4-triggered corcecptor binding state of gp120 $(3,34)$. However, structural comparison of unliganded versus CD4-bound conformations of gpl $120(7,8)$ reveals that the local conformation of the region of the outcr domain fiom which V3 emanates is mostly unchanged. Thus, the extended structure of V3 that we observe here should be generally representative of $V 3$.

Immunization with gpl20 or gri20igp41 in varions contcxts may elicit an immune responsc in which virtually all of the neutralizing activity

Fig. 2. V3 sequence and structure. (A) V3 sequence. The sequences of JR-FL (17) and HXBC 2 are shown along with the consensus sequence of clades A, B, and C . For the consensus sequences, absolutely conserved residues are shown in uppercase, with variable residues in lowercase (37). Singleletter amino acid abbreviations: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; Y, Tyr. The conserved (Arg-Pro) and (Gly-Pro-Gly-Arg) motifs are colored yellow and green, respectively, and are highlighted with the same colors in (D) and (E). (B) V3 electron density and B values. $2 F_{\text {obs }}-F_{\text {calc }}$ density is shown for the entire V3 region and contoured at 1σ. V3 is colorcoded by B value from blue (lower atomic mobility) to red (higher mobility). (C) V3 structure. The entire V3 is shown (color code: salmon, carbon atoms; red, oxygen atoms; dark blue, nitrogen atoms; orange, disulfide bond). Regions corresponding to the fixed base, accordion-like stem, and β-hairpin tip are labeled. (D) Close-up view of the V3 base. From its N terminus (Cys ${ }^{296}$), V3 extends the antiparallel sheet on the outer domain of gp 120 . After hydrogen bonding for three residues, additional sheet contacts are interrupted by two conserved residues: Arg ${ }^{298}$, whose side-chain hydrogen bonds to three carbonyl oxygens, including two on the neighboring outer domain strand; and Pro ${ }^{299}$, which initiates the separation of outgoing and returning V3 strands. In the returning strand, antiparallel β-sheet interactions with core gp 120 recommence with the carbonyl of residue 297 and continue to the disulfide at Cys^{331}. Main-chain atoms are shown for the core and V3 base, colored the same as in (C). Hydrogen bonds are depicted with dashed lines, with select distances in \AA. All atoms of the highly conserved Arg ${ }^{298}$, Pro ${ }^{299}$, and Cys ${ }^{296}-$ Cys 331 disulfide are shown, with Arg and Pro carbons highlighted in yellow and disulfide in orange. (E) Conformation of the V3 tip. From Ser ${ }^{306}$ to Gly^{312}, the main chain assumes a standard β-conformation, which terminates in a Gly-Pro-GlyArg β-turn (residues 312 to 315) $(29,38)$. After the turn, the returning density is less well defined, indicative of some disorder. All atoms of the tip are colored as in (C), with carbon atoms of the conserved tip highlighted in green. Hydrogen bonds that stabilize the β hairpin are shown as in (D).

Fig. 3. Modeled trimer and coreceptor schematic. (A) V3 in the context of a trimer at the target cell surface. The structure of the CD4-triggered gp120 with V3 was superimposed onto the structure of four-domain CD4 (39) and the trimer model obtained by quantification of surface parameters (32). In this orientation, the target cell membrane and coreceptor are expected to be positioned toward the bottom of the page. (B) Schematic of coreceptor interaction. CCR5 (green) is shown with its tyrosine-sulfated N terminus (at residues $3,10,14$, and 15) and three extracellular loops (ECLs). V3 (red) is shown with its conserved base interacting with the sulfated CCR5 N terminus and its flexible legs allowing its conserved V3 tip to reach the second ECL of CCR5.
is directed at V3. We cxamined the crystal and nuclear magnetic resonance structures of V3reactive antibody-peptide eomplexes for clues to this immunodominunt response (fig. S3). Althongh the conformation of $V 3$ peptides in these autibody-peptide complexes varies somewhat, the Pro-Gily tip is more conserved Superimposing the conserved tip in the peptides with
the V3 tip in the core V/3 structure permits the V3 peptide-binding dantibodies to be placed in the context of the gpl 20 corc. The antibodics completely surround V3 (Fig. 4). Although the accessibility of $\sqrt{ } 3$ may be quite different on a primany isolate in its pre-CD4 trimeric state, the extended nature of $V 3$ observed here, when coupled to mechamisms that cloak the rest
of the HIV envelope from antibody binding ($1,35,36$), is consistent with its ability to gencrate an inmunodominant response.

The attributes that we observe for V3 fi.e., high relative surface area, chemically reactive backbone, confonnational tlexibility, and overall extended nature) may allow $\sqrt{ } 3$ to serve as a general molecular hook. Before C'D4 binding,

REPORTS

Fig. 4. Accessibility of V3 to neutralizing antibodies. The molecular surfaces of neutralizing antibodies that block coreceptor binding are shown superimposed onto gp 120 in the context of V3; antibodies 17 b and X 5 bind to the conserved coreceptor binding site on the core, whereas monoclonal antibodies $50.1,58.2,59.1$, 83.1 , and 447-52D bind to V3. (A) Superposition of V3 structures. Core with V3 is shown with V3 peptides as extracted from peptide-anti-V3 neutralizing antibody complexes after superposition of the conserved V3 tip. (B) Antibody accessibility of V3. Core gp 120 with V3 (ribbon representation) is shown in two perpendicular views with Fab fragments (molecular surface representation) of antibodies that bind at the coreceptor binding site on either core or V3. V3 is completely surrounded by neutralizing antibodies, suggesting a high degree of accessibility for generating an immune response.
these attributes would enhance the ability of V3 to grasp neighboring protomers on the viral spike. Such quatemary interactions would explain V3's influence on overall neutralization sensitivity for cxample, its ability to transfer neutralization resistance from YU2 to HXBc2 (//). After CD4 binding, the corceeptor binding site forms and V3 would jut prominently toward the target eell menbranc. In this context, bindiny at the V3 tip may act as a "ripeord" to initiate gp4 4 -mediated fusion. Our results provide a context for coreceptor interactions and suggest how $V 3$, by altering quaternary interactions, can influence IITV evasion of the immune system and also trigger HIV entry into cells. The structure itself represents an

elegant cvolutionarily mallcable solution that baldaces competing reguirements of functional conservation and antigenic variation.

References and Notes

1. R. Wyatt, J. Sodroski, Science 280, 1884 (1998).
2. A. G. Dalgleish et al., Nature 312, 763 (1984).
3. Q. J. Sattentau, J. P. Moore, J. Exp. Med. 174, 407 (1991).
4. Y. Feng, C. C. Broder, P. E. Kennedy, E. A. Berger, Science 272, 872 (1996).
5. L. Wu et al., Nature 384, 179 (1996)
6. A. Trkola et af., Nature 384, 184 (1996).
7. B. Chen et af., Nature 433, 834 (2005).
8. P. D. Kwong et al., Nature 393, 648 (1998).
9. O. Hartley, P. J. Klasse, Q. J. Sattentau, J. P. Moore, AHD Res. Hum. Retroviruses 21, 171 (2005).
10. S. S. Hwang, T. J. Boyle, H. K. Lyerly, B. R. Cullen, Science 253, 71 (1991).
11. N. Sullivan et af., J. Virot. 72, 6332 (1998).
12. K. Javaherian et al., Science 250, 1590 (1990).
13. F. Gao et al., J. Virol. 79, 1154 (2005).
14. P. D. Kwong et al., J. Biol. Chem. 274, 4115 (1999).
15. R. C. Stevens, I. A. Wilson, Science 293, 519 (2001).
16. See supporting data on Science Online.
17. The crystallized JR-FL was derived from a JR-FL variant with two point mutants, $A n^{301} \rightarrow$ Gln and Thr ${ }^{388} \rightarrow$ Ala. These mutations removed two N linked glycans, and the resultant virus was more sensitive to neutralization but was otherwise functional (18).
18. M. Koch et al., Virology 313, 387 (2003).
19. M. Moulard et al., Proc. Natl. Acad. Sci. U.S.A. 99, 6913 (2002).
20. S. E. Ryu et al., Nature 348, 419 (1990).
21. J. H. Wang et al., Nature 348,411 (1990).
22. R. Darbha et al., Biochemistry 43, 1410 (2004).
23. P. D. Kwong et al., Structure 8, 1329 (2000).
24. C. Huang et al., Structure 13, 755 (2005).
25. C. D. Rizzuto et al., Science 280, 1949 (1998).
26. C. Rizzuto, J. Sodroski, AIDS Res. Hum. Retroviruses 16, 741 (2000).
27. E. G. Cormier, D. N. H. Tran, L. Yukhayeva, W. C. Olson, T. Dragic, J. Virol. 75, 5541 (2001).
28. E. G. Cormier, T. Dragic, J. Virol. 76, 8953 (2002).
29. R. L. Stanfield, J. B. Ghiara, E. Ollman Saphire, A. T. Profy, I. A. Wilson, Virology 315, 159 (2003).
30. J. M. Klco, C. B. Wiegand, K. Narzinski, T. J. Baranski, Nat. Struct. Mol. Biol. 12, 320 (2005).
31. G. Lin et al., paper presented at the 12 th Conference on Retroviruses and Opportunistic Infections, Boston, 21 to 26 February 2005.
32. P. D. Kwong, R. Wyatt, Q. J. Sattentau, J. Sodroski, W. A. Hendrickson, J. Virol. 74, 1961 (2000).
33. W. Resch, N. Hoffman, R. Swanstrom, Virology 288, 51 (2001).
34. A. Werner, J. A. Levy, J. Virol. 67, 2566 (1993).
35. R. Wyatt et al., Nature 393, 705 (1998).
36. X. Wei et al., Nature 422, 307 (2003).
37. C. L. Kuiken et al., Sequence Compendium, H.I. V. 2002 (Los Alamos National Laboratory, Los Alamos, NM, 2002).
38. The electron density corresponding to the V 3 tip was strongly defined. For Pro ${ }^{313}$, however, carbonyl "bumps" corresponding to both type I and type II β-turns could be seen, suggesting that the tip was a mixture of conformations. Both type I and type II turns have been observed in V3 antibody-peptide complexes (29). We have modeled the V3 tip as an equal mixture of type I and type II β-turns. For visual simplicity, however, figures display only the type II conformation.
39. H. Wu, P. D. Kwong, W. A. Hendrickson, Nature 387, 527 (1997).
40. We thank J. Robinson for CD4i antibodies 17b, 48d, and 412d; J. Hoxie and G. Lin for discussions regarding the effects of V3 deletion on HIV entry; E. Berger, G. Nabel, and L. Shapiro for comments on the manuscript; and Syrrx for assistance with robotic screening. Supported by the Intramural Research Program of the NIH, Vaccine Research Center (R.W. and P.D.K.), and National Cancer Institute (D.S.D.) and by the International AIDS Vaccine Initiative (1.S. and IA.W.), NIH grants Al24755, A131783, Al39429, Al40895 (J.S.) and CM46192 (I.A.W.), and a grant from the Bill and Melinda Gates Foundation Grand Challenges in Global Health Initiative (D.S.D., R.W., and P.D.K.). Use of SER-CAT at the A.dvanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract W-31-109-Eng- 38 . Coordinates and structure factors have been deposited with the Protein Data Bank under accession number 2B4C and are also available from the authors.

Supporting Online Material
www.sciencemag.org/cgi/content/full/310/5750/1025/ DC1
Materials and Methods
Figs. 51 to 53
Table S1
References
4 August 2005; accepted 17 October 2005
$10.1126 /$ science. 1118398

Species Loss and Aboveground Carbon Storage in a Tropical Forest

Daniel E. Bunker, ${ }^{7 *}$ Fabrice DeClerck, ${ }^{2}$ Jason C. Bradford, ${ }^{3}$ Robert K. Colwell, ${ }^{4}$ Ivette Perfecto, ${ }^{5}$ Oliver L. Phillips, ${ }^{6}$ Mahesh Sankaran, ${ }^{7}$ Shahid Naeem ${ }^{1}$

Abstract

Tropical forest biodiversity is declining, but the resulting effects on key ecosystem services, such as carbon storage and sequestration, remain unknown. We assessed the influence of the loss of tropical tree species on carbon storage by simulating 18 possible extinction scenarios within a well-studied 50-hectare tropical forest plot in Panama, which contains 227 tree species. Among extinction scenarios, aboveground carbon stocks varied by more than 600%, and biological insurance varied by more than 400%. These results indicate that future carbon storage in tropical forests will be influenced strongly by future species composition.

In terrestrial coosystens, functional diversity and relative abundance influence both the magnitude (75) and variability (6) of aboveground biomass. Aboveground biomass, in turn, substantially deternines an coosystem's potential for carbon storage, which plays an important role it the regulation of atmospheric CO_{2} and global climate change (7, 8). Biodiversity, however is changing rapidly in response to a variety of anthropogenic drivers (9/3). The potential for terrestrial carbon seguestration could be altered sharply by ensuing changes in species composition.

The relationship between diversity and aboveground biomass has boen examined in herbaceous ecosystems such as grasslands (3 6), meadows (14), and wetlands (15). These ecosystems, however, account for just 16% of the estimated $558 \mathrm{Pg}\left(1 \mathrm{Pg}-10^{15} \mathrm{~g}\right)$ of carbon stored in vegetation (16). The remaining 470 Pg of carbon reside in forests, woodlands, and savamnahs, more than half (54%) of which are tropical.

In tropical forests, conventional biodiversity manipulations are prohibitively costly because of the large number of tree species as well as the size and longevity of tropical trees. Instead, we simulated species extinctions in a diverse tropical forest by using data from the 50-ha Forest Dynamics Plot on Baluro Colorado tsland (BCl), Panama (17). Our model, which expanded on the approach of Solan and col-

[^13]leagues (ff), enabled us to establish many species combinations and compositions under different extinction secnarios to explore the realm of possible futures for aboverround carbon storage. We simulated these effects on aboveground biomass by removing species with a probability proportional to extinctionrelated traits (e.g., small population size) and replacing the eliminated basal arca with a random draw from the remaining community (fig. 1) (19). We uscd functional traits [wood density and volume per mit basal area; see cquation S 1 in (/9)] to quantify the aboveground carbon pool for each simulated communnity. Thus, variation in functional diversity (the diversity of these functional taits amonge spocies) governs ceosystem response.

We explored three classes of tail-based extituction secnarios that represent a broad spectrum of extinction mechanisms (table S1). One class consists of extinction associated with population traits such as low population growth rates, low densitics, and endenism, which are known conelates of extinction risk ($20-22$). The second class consists of extinction secnarios related to management or harvest statcgics, such as sclective harvest for hardwoods or harvesting the most common or the largest trees: this seenario uses related traits such as wood density, stature, and abundance. The third class consists of species' responses to environmental change, such as changes in procipitation. rates of disturbanee, or elevated $\mathrm{CO}_{2}(23,24)$. We also included a random extinction scenario that serves as a reference and reflects the approach commonly used in combinatorial biodiversity experiments.

The extinction secnarios produed divergent effects in both the magritude and valiability of aboveground carbon storage (tig. 2 and table S 1). For instance, the extinction of species with the lowest wood density led to strong increases ($+75 \%$) in carbon storage (fig. $2, ~(i$ to I, and table $S 1$) whereas the loss of species that attain large stature resulted in a
strong decline in carbon stocks (Fig. 2, D to F, and table S 1). Ixtinction seenarios demonstrated different degrees of loss of biological insuratec (i.c., decreasing prodictability or increasing vaniability as species are lost) (Fig. 2). For instance, the loss of endemic species resulted in relatively less loss of biological insuranee, largely bocause endentics tend to be locally rare and contibute little to total carbon stocks (fig. 2, S to 11, and table Si). These differences in loss of biological insurance are attributable to the extent of variability in functional traits, which is strongly dependent on species identity and conmmunity composition.

Anthropogenic effects on tropical forest diversity valy widely. Selective logging typically renoves a small number of species from a community (25), whereas conversion to forest plattations removes all but one or two species. Our results show that selective logging for

Fig. 1. Impact of tree-species extinctions on carbon storage within an extant tropical forest. Ellipses represent input and output variables, solid arrows represent process steps, and squares represent the three states of the BCl 50 -ha forest plot, in which circles represent trees of different diameter and species identity. On the basis of the relationship between known composition and relative abundance of trees in the 50 -ha plot and current aboveground carbon storage (top), future carbon storage (bottom) can be estimated under different extinction scenarios. Extinction scenarios use trait-based responses to environmental change (e.g., habitat fragmentation and elevated CO_{2}). The middle square represents the transitory state in which extinction has led to reduced abundance. After compensatory growth that replaces basal area lost to extinction, plant traits are used to estimate the ecosystem service of a less diverse forest. RGR, relative growth rate.

REPORTS

species with high wood density, large diamcter, high basal arca, or maximal wood volume will likely lead to overall declines in carbon storage of $70,29,17$, and 21%,
respectively (Fig. 2 and table S1). In contrast conversion to plantations that use species with high wood density may increase aboveground carbon storage by up to 75% if

Mean and CV relative
never harvested (Fig. 2, G to I, and table S1). However, conversion to plantation may cause decreases in belowground carbon and reduce other ecosystem services such as fruit production or water quality.

In addition to dircet anthropogenic forees. changes in forest composition have been observed in natural forests of the Amazon. where increased stem tumover and liana abundance may favor fast-growing species $(24,26,27)$. Our results suggest that if this trend persists, a shift toward fast-growing species in tropical forests could lead to a 34% decrease it earbon storage (fig. 2, M to O. and table S1). Climate observations and model predictions (28,29) both suggest contimued decreases in precipitation over much of the humid tropics. Our model predicts a slight increase in carbon stocks (10%). with a shift toward drought-tolerant species, and notably, a 48% increase it the loss of biological insurance relative to random extinction (Fig. 2, P to K , and table S 1). Thus, species diversity may provide increased biological insuranee in the face of species loss due to reduced precipitation.

Our results should not be interpreted as specific predictions for future carbon storase but rather as an assessment of the relative effects of nonrandom species losses. Drivers of biodiversity change will likely alter additional mechanisms that regulate carbon storage. For example, disturbatees caused by selective logging decrease carbon storage in the short tem, whereas increased precipitation may inercase carbon storage through effects on net primary productivity. In addition, becanse we based our speciespoor communities on the observed composition and basal arca of the BCl plot, the retained species maintain their relative abundance and size-fiequency distributions within these innpoverished communities. For this reason, to the cxtent that complementarity, facilitation, and sampling etfects ($30-32$) occur in the intact 50-ha plot, these forees have equivalent effects in our simulated communities and are invariant

Fig. 2. Representative results of simulated influences of biodiversity on aboveground carbon storage in the 50 -ha Forest Dynamics Plot on BCI , Panama. The intact community included 126 species; the x axes have a $\log _{2}$ scale. The left panels show simulation results (open circles) and linear fit (solid line) of the effect of $\log _{2}$ species richness on aboveground carbon storage. The center panels show the mean (solid diamonds) and coefficient of variation (CV) (open diamonds) of carbon storage. The right panels show the mean (solid triangles) and CV (open triangles) of carbon storage relative to random extinction. (A to C) Random extinction. (D to F) Largestatured species lost first. (G to I) Species with low wood density lost first. (J to L) Species with high wood density lost first. (M to O) Slow-growing species lost first. (P to R) Drought-sensitive species lost first. (S to U) Endemics lost first. (V to X) Widespread species lost first. Values are lower than those reported elsewhere because we excluded 101 species (21\% of aboveground carbon) for which we lacked wood-density data.
with species richness. If complementanity, tacilitation, and sampling effects do contribute to positive effects of diversity on carbon storage on BCL as often has been observed in simpler communities ($1-5$), then actual carbon storage in specics-poor communitics may be lower tham our models predict. Indeed, high diversity within the BCl plot may reduce losses of carbon to density-dependent effects of herbivores and pathogens (33, 34).

Species extinctions are rarely random but rather are driven by the interaction between species taits and envirommental change. Our results show that tropical forest carbon storage depends on species composition and on the mode and manner in which species are lost. By extension, carbon storage in reforested landseapes depends especially on the functional diversity of the available species pool. Because variability decreases with species richness, and becanse extinetion scenarios differ widely in magnitude and direction, manajement options that favor high diversity will maximize predictability for tropical forest carbon storage and scquestration.

We have examined only one of many ecosysten services provided by tropical forests. Extinction scendios that maximize carbon storage may minimize other services such as flood protection, nutrient retention, cultural services, pollination, biological control, and provisioning of firuits, muts, and bush meat (10). IIuman
domination of tenestrial and aquatic landscapes has made us inereasingly dependent on a reduced number of species to provide critical coosysten services. Given uncertainty in both the nature of extinction and the variety of coosysten serviecs raquired for human wellbeing, we may best be able to meet these demands by maximizing the pool of species on which we depend.

References and Notes

1. P. B. Reich et al., Nature 410, 809 (2001).
2. A. Hector et af., science 286, 1123 (1999).
3. D. U. Hooper, P. M. Vitousek, Science 277, 1302 (1997).
4. D. Tilman et al., Science 277, 1300 (1997).
5. A. J. Symstad, Ecology 81, 99 (2000).
6. Y. Bai, X. Han, J. Wu, Z. Chen, L. Li, Nature 431, 181 (2004).
7. R. A. Houghton et af., Nature 403, 301 (2000)
8. D. S. Schimel et af., Nature 414, 169 (2001).
9. M. J. Novacek, E. E. Cleland, Proc. Natl. Acad. Sci. U.S.A. 98, 5466 (2001).
10. A. K. Duraiappah, 5. Naeem, Eds., Mitlennium Ecosystem Assessment: Synthesis Report on Biodiversity (World Resources Institute, Washington, DC, 2005).
11. O. E. Sala et af., Science 287, 1770 (2000).
12. E. J. Milner-Gulland, H. R. Akcakaya, Trends Ecof. Evot. 16, 686 (2001).
13. B. W. Brook, N. S. Sodhi, P. K. NE, Nature 424, 420 (2003).
14. C. Roscher et at., Ecol. Lett. 8,419 (2005).
15. K. A. Engelhardt, M. E. Ritchie, Nature 411, 687 (2001).
16. W. H. Schlesinger, Biogeochemistry (Academic Press, San Diego, CA, ed. 2, 1997).
17. R. Condit, Tropical Forest Census Plots (SpringerVerlag, Berlin, 1998).
18. M. Solan et at., Science 306, 1177 (2004).
19. Materials and methods are available as supporting material on Science Online.
20. K. Gaston, Rarity (Chapman and Hall, New York, 1994).
21. A. Purvis, J. L. Gittleman, G. Cowlishaw, G. M. Mace, Proc. R. Sac. London Ser. B. 267, 1947 (2000).
22. W. F. Laurance, Biol. Conserv. 91, 101 (1999).
23. R. Condit, S. P. Hubbell, R. B. Foster, Ecol. Monogr. 65, 419 (1995).
24. S. L. Lewis et al., Phitos. Trans. R. Soc. London Ser. B 359, 421 (2004).
25. D. C. Nepstad et al., Nature 398, 505 (1999).
26. O. L. Phillips et al., Nature 418, 770 (2002).
27. W. F. Laurance et al., Nature 428, 171 (2004).
28. M. Hulme, D. Viner, Clim. Change 39, 145 (1998).
29. Y. Malhi, J. Wright, Philos. Trans. R. Soc. London Ser B 359, 311 (2004).
30. M. Loreau, A. Hector, Nature 412, 72 (2001).
31. D. A. Wardle, Oikos 87,403 (1999).
32. M. A. Huston, Oecologia 110, 449 (1997).
33. H. A. Peters, Ecol. Lett. 6, 757 (2003).
34. M. Uriarte, R. Condit, C. D. Canham, S. P. Hubbell, J. Ecol. 92, 348 (2004).
35. We thank the Biotic Mechanisms of Ecosystem Regulation in the Global Environment (BioMERGE) Serond Adaptive 5ynthesis Workshop (ASWZ) for insightful discussion and the Missouri Botanical Garden, P. Raven, and J. Solomon for hosting ASWZ. The BioMERGE Research Coordinating Network is funded by an NSF grant to S.N. The BCI Forest Dynamics Plot has been supported by NSF, The John D. and Catherine T. MacArthur Foundation, and the Smithsonian Tropical Research Institute.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1117682/DC1
Materials and Methods
Table 51
References
20 July 2005; accepted 13 October 2005
Published online 20 October 2005;
10.1126/science. 1117682

Include this information when citing this paper.

The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley

Adrian Turner,* James Beales,* Sébastien Faure, Roy P. Dunford David A. Laurie \dagger

Abstract

Plants commonly use photoperiod (day length) to control the timing of flowering during the year, and variation in photoperiod response has been selected in many crops to provide adaptation to different environments and farming practices. Positional cloning identified Ppd-H1, the major determinant of barley photoperiod response, as a pseudo-response regulator, a class of genes involved in circadian clock function. Reduced photoperiod responsiveness of the $\rho \rho d-H 1$ mutant, which is highly advantageous in spring-sown varieties, is explained by altered circadian expression of the photoperiod pathway gene CONSTANS and reduced expression of its downstream target, FT, a key regulator of flowering.

Plants have evolved sophisticated controls to ensure that flowering oceurs when there is the greatest chance of pollination, seed de-

[^14]velopment, and seed dispersal. Usually this involves restricting flowering to a specific time of year. To achieve this, many plants use photoperiod as an envirommental cue to regulate development. The timing of flowering has inportant impacts on crop yicld, and the modification of responses to environmental cues by human selection has been central to the success and spread of agriculture.

The control of flowering by photoperiod is understood best in the long-day (LD) di\cot Afahidopesis and the short-day (SD) monocot cereal rice. In Arabidopsis, expression of G/GANTEA (GI) and CONSTANS (CO) is regulated by the circadian clock such that coincidence of the CO expression peak with light only oceurs in LD conditions. Lightstabilized CO protein is a transeription factor inducing downstream genes, including FLOWERING LOCUS T (FT) (I, 2).

In rice, analyses of natural variation showed that Heading datel (Hdl), a major determinant of photoperiod response, is an ortholog of $\mathrm{CO}(3)$, that $H d 3 a$ is an ortholog of $/ F T(4)$, and that $G /$ is also conserved (5). IIowever, the interaction of $H d I$ with $F T$ is altered such that $F T$ cxpression is inhibited in LDs (2,5). The rice EhdI gene also controls photoperiod response but has no direet counterpart in Arabidopsis and regulates $F T$ independently of $/ / d /$ (6). Photoperiod response in rice therefore has conserved and novel aspects compared with Arahidopesis, but in both species increased $F T$ expression is erneial to the induction of flowering. Gienes controlling photoperiod response in temperate cercals such as barley (fordeum migare) have not been identified previously.

Harlcy varicties can be broadly elassified as winter or spring types. Winter (fall-sown) bar-
leys require vernalization and usually show strong promotion of flowering in response to LDs. This is typical of H. spontaneum, the wild progenitor of barley, suggesting that this is the ancestral condition. Spring (spring-sown) barleys lack vernalization requirement and show weak or strong response to LDs depending on whether they have been selected for long or short growing seasons, respectively. In long growing seasons, as in Western Europe and much of North America, reduced response to photoperiod allows spring-sown plants to extend the period of vegetative growth and accumulate additional biomass that supports higher yields.

The major determinant of LD response in barley is the Photoperiod-H1 (Ppd-H1) locus $(7,8)$. The late-flowering $p p d-H 1$ allele is recessive (Fig. 1A), suggesting that reduced response results from a mutation that impairs gene function. Ppd-H1 does not correspond to either of the barley CO -like genes (HvCOl and HvCO 2$)(9)$, showing that different major determinants of photoperiod adaptation have been selected in barley and rice.

We identified Ppd-H1 by positional cloning, using colinearity of the barley $P p d-H 1$ region with rice and Brachypodium (10). Finescale mapping using lines derived from an Igri (Ppd-H1) and Triumph (ppd-H1) cross (Fig. 1, B and C) enabled a physical map of the Ppd-H1 region to be developed (Fig. 1D). Recombinants defined a region containing a single gene that was a pseudoresponse regulator $(P R R)$ most similar overall to Arabidopsis PRR7 (fig. S1). PRR proteins are characterized by two conserved regions, a pseudoreceiver domain with similarities to bacterial two-component signaling systems and a CO, CO-like, and TOC'1 (CCT) domain that is also found in the CO family ($/ /$). The barley $P R R$ gene was amplified by polymerase chain reaction (PCR) from lgri and two H. spontaneum accessions (JIC'-1894 and JIC-1947) crossed with Igri and shown to have the Ppd-H1 allele. Morex, which provided the bacteria artificial chromosome (BAC) sequence, was crossed with Igri and shown to have the $/ P /-/ / /$ allele. Other $/ p$ hed/HI lines sequeneed were Triumph, Giolden Promise, and Optic. This revealed 23 polymorphisms, of which 7 were single muelentide polymorphisns (SNPs) that produced amino acid changes distinguishing $P_{P} p-/ / H$ and $p p d-H 1$ alleles $(1,12,15,20,21,22$, and 23 in Fig. llij. Regions contaitning thesc SNPs were seguenced from a further eight /i. sponiafteum accessions known to be carly flowering in LDs and wine barley valieties previonsly classified as carly or late flowering in LDs (table S3). In the extended set, four SNPs (1, 15, 22, and 23) remained completely associated with Ppd-H1 or ppd-Hl alleles (tig 2). Threc were in regions of low conservation with rice and Arabidopsis (fig.

Fig. 1. Flowering phenotypes, genetic and physical mapping of the $P p d-H 1$ locus, and sequence variation between alleles. (A) Phenotypes of homozygous Ppd-H7 (left), heterozygous Ppd-H1/ ppd-H1 (middle), and homozygous ppd-H1 (right) plants. (B) Flowering time (days to awn emergence) of BC_{3} (backcross 3) recombinant plants. (C) Flowering time of selected families with their respective homozygous recombinant chromosomes (right) where black segments have Igri alleles and white segments have Triumph alleles. (D) Genetic and physical maps of the Ppd-H1 region in barley and colinear regions in rice and Brachypodum. The barley genetic map has its basis in 2336 Igri \times Triumph $B C_{3}$ plants and shows the numbers of recombinants in the intervals flanking the Ppd-H1 locus. Key barley BAC clones are drawn to the same scale as the rice genomic sequence. Circles are BAC end sequences. BAC 2 was completely sequenced (AY943294). Rice chromosome 7 genomic sequence (AP005199) has annotated genes (listed in table 51) as black rectangles. The Brachypodium BAC shows gene content, with the solid line indicating genes with confirmed order and orientation. (E) Structure of Ppd-H1 (the eight exons are shown as black rectangles) and positions of the 23 polymorphisms identified in fully sequenced $P \rho d-H 7$ and $\rho p d-H 1$ aleles. 1 and 3 to 23 were 5NPs, whereas 2 was a 5 -base pair (bp) insertion/deletion polymorphism (indel). Polymorphisms in exons are indicated by solid lines.

S1), but the fourth produced a Gly-to-Trp change in the © Cll domain affecting a residue that is conserved in all C'C'T domain genes identified to date (fig. S2) and that is the most likely causal basis of the ppd-H1 mutation. The CXI domain mutation was a G-to-T change, which removed a BstUI restriction sitc, providing a simple PCR-based assay for the $p p d-H 1$ allele (fig. S3)

Afalidopxis pre 7 mutants showed delayed flowering in LDs but showed no significant
effect in SDS (/2, 13), similar to the effect of pred-//f (7,8). Iff. 7 mutants also lengthen the period of clock-mediated leaf movement (14) and affeet the expression of clock components $C C A l$ and $L H Y$, implicating the gene in the phasing of the clock in relation to light (15, 76). These results suggested that ppd-H1 might affeet flowering by altering the expression of photoperiod pathway genes that have circadian control. l'o test this, we compared gene expression in Triumph ($p p d-H I$) with a Tri-

Fig. 2. Genotypes of seven barley varieties and 10 H . spontaneum accessions carrying the $\mathrm{Ppd-H1}$ allele and seven barley varieties carrying the $\mathrm{ppd}-\mathrm{H} 1$ allele at the seven SNPs that produce amino acid changes in the predicted protein. Polymorphism positions are shown in Fig. 1E. HsJIC-164 has a 9-bp deletion spanning SNP20. Amino acids that distinguish the alleles are shown above and below in bold: A, Ala; G, Gly; H. His; P, Pro; Q, Gln; S, Ser, T, Thr; and W_{1} Trp.

	\sum_{∞}^{-}	$\begin{aligned} & N \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \sum_{\infty}^{2} \end{aligned}$	$\begin{aligned} & \text { の } \\ & \frac{1}{2} \\ & \sum_{\infty} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \frac{1}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \end{aligned}$	
	H		P			G	A^{-}	
'Igri'	C	A	C	G	A	G	G	
'Dairokkaku'	C	C	C	G	G	G	G	
'Funza'	C	C	C	G	G	G	G	
'Hayakiso'	C	C	C	A	G	G	G	
'Haruna Nijo'	C	c	C	G	G	G	G	
'Nigrinudum'	C	C	C	G	G	G	G	
'Steptoe'	C	C	C	G	G	G	G	
HsJIC-1894	C	A	C	G	A	G	G	Ppd-H1
HsJIC-1947	C	C	C	G	G	G	G	
HsJIC-16	C	c	C	G	G	G	G	
HsJIC-52	C	C	C	G	G	G	G	
HsJIC-144	C	C	C	G	G	G	G	
HsJIC-164	C	c	C	G	-	G	G	
HsJIC-209	C	C	C	G	G	G	G	
HsJIC-1284	C	C	C	G	G	G	G	
HsJIC-1377	C	C	C	G	G	G	G	
HsJIC-2602	C	C	C	G	G	G	G	
'Triumph'	G	C	T	A	G	T	A	
'Morex'	G	C	T	A	G	T	A	
'Barke'	G	C	T	A	G	T	A	ppod-H1
'Blenheim'	G	C	T	A	G	T	A	ppd-m
'Kym'	G	C	T	G	G	T	A	
'Golden Promise'	G	C	T	A	G	T	A	
'Optic'	G	C	T	A	G	T	A	
	Q		S			W	T	

umph line into which the Podi-H/ allele from Igri had been introgressed

In LDs Ppod-II/ was expressed prodominantly in the early part of the day (Fig. 3A), similar to the expression patterns of Arabidopsis $P R R 7$ and related genes in rice. An entrainment experiment confirmed that the barley gene was under circadian control, as previously shown for Arabidopxis and rice $P R R$ genes $(17,18)$. Although $P R R$ genes are implieated in clock function we deteeted no significant difference between $\operatorname{Ppd}-H 1$ and fidd-/hl plants in the expression of P_{l} rd- $/ / / 1$ itself or the barley homolog of GI (HvGI) (Fig. 3B). Itowever, two barley CO-like genes (HvCOl and HvCO) were affected. ppd-H1 plants showed reduced expression of HvCOl at 8 and 12 hours (t ig. 3 C), and /IvCO2 was more significantly affected with reduced cxpression throughout the light period and a delay in the expression peak of about 4 hours (Fig. 3D). By analogy with Arabidopsir, the reduced expression of HvCOl and HvCO 2 during the latter part of the light period it $p p d-H 1$ plants should reduce $F T$ expression. We first tested whether barley (.O genes behaved like CO in Arabidopsis by analyzing their expression under SDS [8 hours of light (fig. S4)]. $\mathrm{HvCO2}$ expression was lower at the start of the day but peaked at a similar time in SD and LD, whereas HvCOl peaked at 20 hours in SD s. The later peak of $/ \mathrm{H} \cdot \mathrm{CO}$ expression in SDs and the higher expression of both genes at dawn in LDs were similar to CO in Arabidopsis (19). We then isolated
a barlcy $F \%(/ 11 / 7)$ genc that is orthologous to rice $H d 3 a$ (10). Expression of $H \nu F T$ was consistently very low in SI) (figs. S 4 and S5) and was markedly lower in ppd-H1 in LDs (Fig. 31:). The late-flowering phenotype of $p p d-H 1$ can therefore be explained through known photoperiod mechanistns by a reduction in $F T$ expression resulting firm altered circadian timing of $C O$ expression. The lack of effect on $H V G I$ expression suggests that the ppd-l/f mutation docs not have a strong disruptive effect on clock function or that the barlcy mutation affects an output linking the circadian clock to the HvCO genes. IIowever, additional effects such as a direct role in $H v F T$ expression camot be ruled out.

Previons work (14) surveying 150 Afahidopsis accessions identified $P R R$ genes as candidates for quantitative trait loci that provide adaptive variation by modulating circadian timing. Clock period length was correlated with latitude of ongin, suggesting that these genes provide adaptive variation it photoperiod response. The identification of $P p d-H 1$ as a $P R R$ gene shows that the $P R R$ family is of general importance for adaptation to matural and agricultural settings. Notably, comparative mapping shows that the major wheat photoperiod response genes are in colinear regions on the group 2 chromosomes (20) and that $/$ /d 2 is in the coliticar region of riec chromosome 7 (21), making these attiactive targets for further analysis. The availability of P_{p} pl- $/ H /$ will provide greater understanding of the ways

Fig. 3. Gene expression patterns in $\mathrm{Ppd}-\mathrm{H} 1$ (solid line) and $p p d-H 7$ (O, dashed line) plants grown in LD (16 hours of light) conditions and sampled at 4 -hour intervals over a 24 -hour period: (A) HvPpd-H1, (B) HvGl. (C) HvCO1, (D) HVCO2, and (E) HVFT. Means and standard deviations from three independent experiments are shown expressed in arbitrary units normalized against the amount of 18 S rRNA (10) Primers and primer positions are given in table S4. Error bars indicate SEM.
in which ecreal development is regulated by envirommental cues, allowing plant breeders to tailor erops to specifie environments and to adjust varieties to new conditions arising from climate change.

References and Notes

1. F. Valverde et al., Science 303, 1003 (2004),
2. R. Hayama, G. Coupland, Plant Physiol. 135, 677 (2004).
3. M. Yano et al., Plant Celd 12, 2473 (2000)
4. S. Kojima et al., Plant Celf Physiof. 43, 1096 (2002)
5. R. Hayama, S. Yokoi, S. Tamaki, M. Yano, K. Shimamoto, Nature 422, 719 (2003).
6. K. Doi et al., Genes Dev. 18, 926 (2004)
7. D. A. Laurie, N. Pratchett, J. H. Bezant, J. W. Snape, Genome 38, 575 (1995).
8. L Decousset, S. Griffiths, R. P. Dunford, N. Pratchett, D. A. Laurie, Theor. Appl. Genet. 101, 1202 (2000).
9. S. Griffiths, R. P. Dunford, G. Coupland, D. A. Laurie, Plant Physiol. 131, 1855 (2003).
10. Materials and methods together with details of the positional cloning of $P_{\mathrm{pd}} \mathrm{H}$ 1 are given on Science Online.
11. T. Mizuno, N. Nakamichi, Pfant Celf Physiof. 46, 677 (2005).
12. Y. Yamamoto et at. plant Cell Physiot. 44, 1119 (2003).
13. N. Nakamichi, M. Kita, S. Ito, T. Yamashino, T. Mizuno, Plant Celt Physiol. 46, 686 (2005).
14. T. P. Michael et al., Science 302, 1049 (2003).
15. K. A. Kaczorowski, P. H. Quail, Plant Celf 15, 2654 (2003).
16. E. M. Farré, S. L Harmer, F. G. Harmon, M. J. Yanovsky 5. A. Kay, Curr. Biot. 15, 47 (2005).
17. S. Makino, A. Matsushika, M. Kojima, Y. Oda, T. Mizuno, Plant Celf Physiof. 42, 334 (2001).
18. M. Murakami, M. Ashikari, K. Miura, T. Yamashino, T. Mizuno, Plant Celf Physiol. 44, 1229 (2003).
19. P. Suárez-Lopez et af., Nature 410, 1116 (2001).
20. D. A. Laurie, Plant Mol. Biot. 35, 167 (1997).
21. T. Yamamoto, H. X. Lin, T. Sasaki, M. Yano, Genetics 154, 885 (2000).
22. This work was supported by grant 208/D18107 from the Biotechnology and Biological Sciences Research Council of Great Britain and by a grant-in-aid from
the same body to the John Innes Centre (JIC). Sequences were deposited in GenBank.

Supporting Online Material

www.sciencemag.org/cgi/content/ful//310/5750/1031/ DC1
Materials and Methods
Figs. 51 to 55
Tables S1 to S4
References and Notes
19 July 2005; accepted 12 October 2005 10.1126/science. 1117619

New Products

http://science.labvelocity.com

Protein Staining

Clyco-Stain allows for the staining of glyco-protein bands that may not be visible if stained with ordinary Coomassie dye or silver staining procedures. Through the use of a modified silver enhancement technique, it offers nanogram levels of sensitivity, with greater than twofold increase in glycoprotein and proteoglycan detection. Glyco-Stain detects both glycosylated and non-glycosylated proteins.
G-Biosciences/Genotech For information 314-911-6034 www.GBiosciences.com

Automated Sample Processing

With a footprint of just 2 m by 1.2 m , the BioCel 1200 is a compact system capable of automating a wide range of applications, from compound plate replication and high-throughput screening assays in drug discovery research to nucleic acid sample preparation in genomics laboratories. The design of the BioCel 1200 features the reliable high-speed central robot found in the popular BioCel 1600, with the new capability of robotic reach outside the system frame. This feature, combined with the use of space-saving sliding doors, permits the flexibility to easily integrate large readers, compound stores, and other devices into the system. The new design also enables future expansion by combining multiple units with plug-and-play simplicity.
Velocity-11 For information 650-846-6600 www.velocity $11 . c o m$

Reprobing Buffer

The ReProbe Western Blotting Stripping and Reprobing Buffer Solution saves time and antibodies by stripping and reprobing protein immunoblots. The buffer is a premade solution for removing antibodies and substrates following protein immunoblotting and can be used with poly(vinylidine fluoride) or nitrocellulose. It allows efficient use of limited samples because images can be compared with different antibodies in the same blot.
Amresco. For information 800-448-4442
whw.amresco-inc.com

RNA Transcription

 The DuraScribe T7 and SP6 Transcription Kits produce RNA transcripts that are completely resistant to ribonuclease A. The DuraScribe T7 and SP6 RNA polymerases in the kits are mutant forms that recognize the same transcription promoters as standard T7 and SP6 RNA polymerases. DuraScript RNA is suitable for RNA aptamer studies. Epicentre Biotechnologies. For information 800-284-8474 www.EpiBio.com
X-Ray Crystallography System

The Smart Breeze x-ray crystallography system features the aircooled Smart Breeze 4 K charge-coupled device (CCD) detector, a compact goniometer, and an x-ray generator. The system features new AutoSource software for fully automatic three-dimensional structure determination of organic and coordination molecules from x-ray data. The system's advanced CCD technology allows it to be air-cooled for low maintenance while offering data quality supe-
rior to that of most conventional water-cooled detectors. This novel system, with its intuitive and automate software for structure determination, is suitable for synthetic chemistry research groups. Bruker AXS. For information 608-276-3000 www.bruker-axs.com

SPR System

The Autolab Esprit surface plasmon resonance (SPR) system offers the unique option of simultaneous electrochemical and SPR measurements. Designed with dual channels-one for samples and one for reference-the Esprit is a powerful tool for life sci-
 ences, biotechnology, and pharmaceutical research laboratories. The integrated autosampler allows samples to be handled manually and with automated methods, either preprogrammed or customized. Additional electrochemical techniques include cyclic voltammetry and impedance spectroscopy when used with an Autolab electrochemical system.
Brinkmann For information 800-645-3050 www.brinkmann.com

Spectrophotometers

The DU Series 700 ultraviolet/visible scanning spectrophotometers offer many new capabilities for life sciences and general research applications. The systems feature focused-beam technology and a small bandwidth, which ensure new levels of accuracy and reproducibility, even with minor variances in cell positioning. For very small volumes in applications such as nucleic acid research, the DU 700 series can accommodate Beckman Coulter's $50-\mu \mathrm{l}$ Microcells. The DU 720 model is suitable for general purpose applications and features fixed wavelength, wavelength scan, time, and kinetics measurements, and single-component analysis. The DU 730 model for life science applications adds advanced tools for protein and nucleic acid analysis, including determination of dye incorporation percentage for microarrays and a new set of DNA/protein calculation and conversion tools. With a touch-screen interface, the DU 700 instruments are easier to use than systems with keyboard controls. USB ports enable direct connections to printers and memory devises. Beckman Coulter For information 800-742-2345 www.beckmancoulter.com

Literature

Microarrays is a brochure that describes the microarray process and answers many questions, including how to control for technical variability and how to standardize and validate data.
Stratagene For information 800-894-1304, www.stratagene.com

[^15]
ScienceCareers.org

Classified Advertising

For full advertising details, go to www.sciencecareers.org and click on How to Advertise, or call one of our representatives.

United States \& Canada
E-mail: advertiseQsciencecareers.org
Fax: 202-289-6742

ILL DOWNING

(CT, DE, DC, FL, GA, MD, ME, MA, NH, NJ, NY, NC PA, RI, SC, VT, VA)
Phone: 631-580-2445
KRISTINE VON ZEDLITZ
(AK, AZ, CA, CO, HI, ID, IA, KS, MT, NE, NV, NM, ND, OR, SD, TX, UT, WA, WM)
Phone: 415-956-2531
KATHLEEN CLARK
Employment: AR, IL, LA, MN, MO, OK, WI,
Canada; Graduate Programs; Meetings \& Announcements (U.S., Canada, Caribbean,
Central and South Americal)
Phone: 510-271-8349

EMNET TESFAYE

(Display Ads: AL, IN, KY, MI, MS, OH, TN, WV: Line Ads)
Phone: 202-326-6740
GABRIELLE BOGUSLAWSK
(U.S. Recruitment Advertising Sales Director) Phone: 718-491-1607

Europe \& International
E-mail: adsescrience-int.co.uk
Fax: +44 (0) 1223.326-532
TRACY HOLMES
Phone: +44 (o) 1223-326-525
helen moraney
Phone: +44 (0) 1223-326-528
CHRISTINA HARRISON
Phone: +44 (o) 1223-326-510

SVITLANA BARNES

Phone: +44 (0) 1223-326-527
JASON HANNAFORD
Phone: +81 (0) $52-789$-1860
To subscribe to Science:
 In tee vest oftec wovkl call 44 (6) 1223-320-515

 S nre we ave an interia: malj jc.rnal, w. . nà see ads icco non-U.

 d'sc*oñelorver olle isiec

ROSALIND FRANKLIN UNIVERSITY OF MEDICINE AND SCIENCE
Assistant/Associate Professor, Membrane Pro tein Structural Biology. As part of a Universitywide initiative, the Department of Biochemistry and Molecular Biology (BMB) is undergoing significant expansion and invites applications for a tenure-track Assistant or Associate Professor in the area of membrane protein structural biology. We seek candidates employing cutting-edge biophysical techniques that will provide fundamental insight into the structurebased mechanisms of membrane proteins. Although preference will be given to candidates using X-ray crystallography, electron paramagnetic resonance, or cryo-electron crystallography, outstanding candidates emploving other biophysical approaches are also encouraged to apply. BMS is a well-firnded active departmint that enjoys strong Eniversity com mitment to development of membrane protein structural biology. Tr addition to faculty secruitment in this ared, the . 1 iversity commitnent meludes recent develapment of the Roswlind Franklin Structural Biology Taboratories icomsistines of state-ofthe art facilitics for X rav diffiraction and mass spectornetry/Protecomics) and a Ric phyysical Tnstrumentation liacility, as woll as access to the noarby APS via particituation in the Southeast Regiomal Collaborative Access Team beanline consorfium. Candidates at the Assistant Professor lewel must hawe outstandiner resuarch potential and a coumminnent to cxcellence in teaching, whereas applicants at the As sociate Professou level must demonstrate curtstand ing resuarch ace mophlishonent incladiner mational recognition and cxtramural fiunting, as woll as a track record in graituate training. 'line suciessfil candidate wall recelve a highly enmpetatue salary, an attractive startup packige and space, and is cxpected to develeg or maintain an extermally funded research program, as well as teach at the mealical and groad thate sehool levels. liuther information about the Theparment can be viewal at website: hatp: // www.rosalindfranklin.edu/cms/biochem. Intcr csted applicants should submit their curriculum wi tae, a two (2-page suminaly of research interests, copies of representative publications, and the names of at least three references to: Dr. Rotiald S. Kaplan, Chair, Department of Biochemistry and Molocular Biology, Rosalind Franklin University of Modicine and Science, 3333 Green Bay Read, North Chicago, L 60064 , or as an attached docu ment tol: e mail: ronald.kaplanerosalindfrandin. cdu. Review of applications will begin immadiately and will continue until the position is filled. Rusititio

MEDICAL/MOLECULAR MICROBIOL

OGISI: 'Icnurc track Assistant Protessor poisition availathe Auspust 2006 . Ph.J. in medical/ molelecular microbiolegey or related discipline; rescatch interests related to biological terrorisum or dosely related area highly desirable. Successful applicant must be able to toach microbial gonetics and diagnostic batericolege: Candidate is exfected to establish an active, externally fiunded rescarch program involwing graduate and/or undergraduate studonts. Sucecssfíl applicant must demonstrate effective commumiation and teaching by prosenting a roscarch scminar and giving a teach ing demonstration during an on campus intervicw. Mail one ecopy of all university transcripts, statements of toaching and research philosophics, curric ulum vitac, and three letters of reconminendation to Dr. Judith Greenamyer, Department of Biology, West Chester University, West Chester PA 19330 (nose-mail applicationsij. Review of a andidates begrins on 15 December 2005, and continues until position is filleal. For more details call: telephonc: 610-436-

 are atoryily amonderged to spish

FACULTY POSITION

Department of Cell Biology and Physiology Molecular Oncology Program
The Department of Cell Biology and Physiology at Washington University School of Medicine invites applications for a tenure-track appointment at the rank of ASSISTANT PROFESSOR. Outstanding individuals investigating fundamental problems in molecular oncology are encouraged to apply. Can didates must demonstrate the ability to develop an independent research program and a commitment to excellence in graduate education.
Applicants must have a Ph.D. and/or M.D. and postdoctoral experience. Please send curriculum vitac, a summary of current and proposed research programs, and arrange for three letters of recommendation to be sent to:

Dr. Helen liwnica Worms, Chair
Cell Biology and Physiology Search Committee Washington Uthiversity School of Medicine 660 South Euclid Avenue Campus Box $\$ 228$ St. Louis, MO 63110
E-mail: facultywarch@acllbiology wustl.colu
Applications should be recoived by March 1, 2006.

ASSISTANT PROFESSOR

Kansas State University Cancer Biology

The Thivision of Biology of Kansas State ITniversity (KSU) invites applications for a tenure track Assistant Professer pexition. We are searching for an individual perfimming basic restarch in cances cell os moleculat biology using a model system. She/he will join a strong group of diverse colleagues doing resarich in collular, molectular and devolopmental biolege, many using a model systems approach. She/he will also be an affiliate of the Johnsen Center for Basic Cancer Rrscarch. I'he sucecssifil applicant will cstablish a vigorous, extranurally finded independent research program, and participatc in undergraduatc and grad ulate instructicun.

A Ph.J., M.D., (or equivalent and pestacteral training are repured. Competitive salary and startup finds will be prowided. Hichlegy encourages diversity, Firther infumpration is available at website: hatp:// www.edu/biology/ancerbiologist. Applicants should subunit al letter of interest, curriculum vitat, description of future research plans, and have three letters of reforence sent to: Dr. Rob Denell, Cancer Biologist Scarch Committec Chair, Division of Biology, 232 Ackert Hall, Kawsas State Univer sity, Manhattan, KS 665064901 . Reriew of ap plications will begin December 9, 2005, and continue until the position is filled.
 Action Emploper, whd atterely sefles divervity smoug it

RESEARCH ASSISTANT PROFESSOR: Non-tenure-track position avalable December I 2005, to sudy the role of actin based molecular mostors in transcription. Requirements: M.T)., Ph.T) or equivalent degree in cell biodegy, modecular biology, biochomistry on related discipline, and a mimimun three yars postdoctoral experience. Must have experience with tiansciption assas and myosir biochemistry. Salary commensurate with experience For firllest consideration send curriculum vita and names of three referencos by Nowember 28, 2005 to: Business Manager, University of Illinois, Chicayo (UTC) Department of Physiology, 835 s . Wolcott, M/C 901, Chicago, IL 60612. रIC is an

Broadening the Breadth of Science

Research moves ahead through innovation, which can be triggered by diverse perspectives. Consequently, academic, industrial, and government institutions work to attract people from a range of cultural, disciplinary, ethnic, and gender backgrounds as well as scientists with disabilities. The experts interviewed here assess the state of diversity in science and discuss ways to improve it. BY MIKE May

Science thrives on diversity. Systems biology, for example, arose from a collection of disciplines once thought disparate. Such diverse interactions also arise in other fields. According to Gibor Basri, professor of astronomy at the University of California, Berkeley, "The diversity of people who work on problems is tremendous in the sense that there's a very international component to it, especially in astronomy." He adds, however, "The faculty in the U.S. in very nondiverse, mostly older, white males. It's a real issue of concern for us."

In 2005, Donna J. Nelson and Diana C. Rogers, both of the University of Oklahoma, reported that faculties include fewer women even in areas of study where women earn more Ph.D.'s than men. For example, Nelson and Rogers found that women make up only 3 percent to 15 percent of the faculty at top institutions. That means that undergraduates might never have a female professor. Moreover, broad advances in science depend on participation from all backgrounds. CONTINUED »

Abbott

http://www.abbott.com/
American Association for the
Advancement of Science
http://www.aaas.org
InterGenetics
http://www.intergenetics.com/
Keck Graduate Institute http://www.kgi.edu/

Tufts-New England
Medical Center
http///www.nemc.org/home/
University of
California, Berkeley
http $/ / /$ www.berkeley.edu/

Cutting edge science driving the discovery of new medicine.

Driving the success of GlaxoSmithKline-the world's leading pharmaceutical organizationis a continual search for innovation. Beyond a research and development capability that sets the benchmark for our industry, we're committed to recruiting and retaining the best and brightestby providing exceptional individual and career development opportuntities. This is an exciting time to be pursuing a scientific career with GSK, most notably because our therapeutically aligned CliDDs (Centers of Fxcellence for Drug Discovery) allow scientists the freedom to determine the course of their researeh. Here you'll find dedicated teams of scientists, including a drug metabolism and pharmacokinetics group, biologists, chemists, x-ray crystallographers and computer modelers, all working towards one shared purpose. Our mission is clear-to prevent, treat and cure discases, allowing people around the world to do more, feel better and live longer.

Our goal is to discover and develop novel disease modifying therapies, as well as cffective pain medication, for osteoarthritis and we have key openings within those ambitious initiatives. We currently have the following opportunities available in our state-of-the-art facility, located in Collegeville, 12A, just a short distance from lhiladelphia.

Manager/Associate Director, Osteoarthritis Research

In this role, you will provide leadership and direction for a musculoskeletal-oriented drug discovery team, including biologists and scientists within a matrix enviromment. You will also be responsible for applying basic biology to the drug discovery process, including innovation in antimal model and assay development.

To qualify, the candidate must have a Ph.D. with postdoctoral experience in cell biology, molecular biology or pharmacology. At least 5 ycars' inctustry experience in drug discovery preferred. Requires the ability to provide leaderchip within a multidisciphinary team; and mastery of the application of scientific incight to establish priorities, define strategy, and implement plans to resource multiple programs appropriately. A thorough understanding of the pathophysiology of osteoarthritic and/or osteoporosis is strongly desired, as is hands-on experience with preclinical models of ostcoarthritis, or in-vitro models of chondrocyte biology. (Req. L1) 27699)

Associate Scientist, Osteoarthritis Research

In this role, you will support existing drug discovery programs and new target identification for osteoarthritic, chiefly by developing innovative assaya and performing compound screening. This includes the planning and execution of cartilage/chondrocyte biology experiments, as well as effective storage, interpretation and presentation of data/results.

To qualify, one must possess a BS/MS in cell biology, molecular biology (or related discipline) along with 1-5 years of experience in cell/tissue based assays and compound acreening. Fxperience with mammalian cell culture is cssential, while the use of in-vitro/exvivo models of cartilage/chondrocyte is highly preferred. Successful candidates should possess superior communication and data analysis software skills. Tiuency with state-of-the-art molecular technology, such as RRVAi, overexpression, and viral transeluction is prefened. Specific knowledge of osteoarthritis and cartilage/chondrocyte brology is desired, as is a background in drug discovery. (Req. W) 28123)

GlaxoSmithKine is dedicated to supponting you with career-fong opportunities and leaming. We offer a competitive benefits and compensation package designed to attract and retain the very best. For confidential consideration and efficient processing of your resume, please visit our website at www.gsk.com/careers referencing Req. 10 of the position of interest. Indicating Req. ID is essential to search. Principais ondy, no agencies, please.

GSK is proud to promote an opun cuiture encouraging peopie to be thernselves and giving their ideas a chance to flourish. GSK is an equal opoortimity empioyer.
 gsk

GlaxoSmithKline

Outstanding Training for Careers in Science Interdisciplinary collaboration is the cornerstone of life sciences research at the University of Missouri-Columbia (MU). Our research credentials are stellar: MU is a member of the highly selective issociation of ilncrican Univenstics, is classificd as DoctoraliRescaarch Intemsive by the Cauncgic Foundation - and MLL faculry are recognized incermationally for research leadership in human and animal health, food, agriculture and environmental issues.

Research facilities at MU are outstanding and include the new 200,000 square foot Life Sciences Center, which serves as a hub for state of the art science research and education for the campus community. Centralized support services are available for high throughput genomics and proteomics analyses, automated DNA scquencing and DNA microarrays, mulriforon confocal micmscopy, scanning and transmission elecron microscopy, small animal imaging with MRI and CT , monoclonal antibody production and coll sotting. transgenic and knockour mice and rars, transgenic plants, X-ray crystallography and N 'MR specrosoopy. 'The campus is also home to the nation's laryest wiversity rescatch feactot.

Commitment to Student Success

Recent PhD graduatc Latisha Love-Gtegory says it best: ${ }^{\text {a }}$ The wllabotative spifit of the science commenity it MU and the incerdisciplinary approach to scientific invesrigarion prowided the at excellent training environment with graat rescatch opporrunities. My faculty mentors rreared me with respecr and their commiment to my sucess was obvious. The faculty also maintained an open-doot policy allowing for imptomptu discussions. A "survival course" was presented for new graduare srudents that emphasized purting rogerher and presenting cffective scicntific prescntations and manusctipts. I folt ready and well-prepared for the new challenges l've encouncered in my postdoctorid endeavors because of my expericnees at ML-."

A Great Place to Live . . .

Ml; is located in the ciry of Columbia - a vibrant, well-educated community of divetse cultures. Columbia is convenicntly located in the cuntct of the $1-74$ corridot through . Wissouti - just 2 hours from Kansas (iiry or $\$$ t. Lomis - and is consistennly ranked as one of the nation's most livable citics. Missouti is a beautiful statc. with recteationial opportunitics including the sophistication of biy ciries, the charm of small towns, and ourdoor fayorites - hiking and biking trails, lush forests and the clear waters of the Ozark National Scenic Riverways.

Latlsha Love-Giregory, PhD
D: _owe-Gecac ygaduated "cm Mu wirl a ${ }^{3}$ Di in Gientirs. arr, is row a rliriral "ellow ir c, ce wistry and molecular diagnostics at Washington University in St. Louis, Mo.

Doctoral and Postdoctoral Fellowships and Degree Programs

Doctoral degrees are offered in over 40 life sciences departments and programs at MU. A variety of fellowships are available which include a competitive stipend, tuition waiver and health insurance. Graduate students in life science departments may also be eligible to participate in interdisciplinary NIH training grants. Postdoctoral fellowships are available in many departments and programs as well.
A sampling of life sciences programs can be found below. A complete listing of academic programs and campus informarion can be found at http://Mrww.missouri.edu.

Biochemistry
http:/imwnwiochem.missouri.cdu
Phone toll free: \{800\} 647-2414
Biological Sciences
http://www.biology.missouri.edu
Phone toll free: (800) $553-5698$
Biomedical and Health Informaties
Research Training Fellowships
http://wwwhmi.missouri.edu
Phone: (800) 877-4764
Comparative Medicine Program
http:/imwneradil.missouri.cdufinfo/cmp Phone: (573) 882-6623
Conservation Biology
http://www.cansery.missouri.edu Phone toll free: (800\} 553-5698
Genetics Area Program |http:/hwow.biotech..nissouri.edu;igenetics Phone toll free: 1877 Genc-PhD $1435-3743$; Interdisciplinary Neuroscience Program
http:/hwww.neurasci.missouri.edu
Phone toll free: (800) $553-5698$
Interdisciplinary Plant Group
http://www.plantgroup.org
Phone: (573] 882-4847
Life Sciences Fellowships
http://lifesciences.missouri.edu
Phone toll free: (877) 436-3743

Medical Pharmacology \&

Physiology
http://www.missouri.edu/-maldz2/pharm/
index.htm • Phone: (573) 882-4957
Mentored Biomedical
Researchers Training Initiative
http://web. missouri. edu!/-gradschl/ financial/(mbrti/mbrti.htm
Phone: (573) 884-2082
Molegular Microbiology $\boldsymbol{\&}$ Immunalagy
http:/hwww.missouri.edu!-mminwwow
Phone: (573) 882-8152
Pathology \& Anatomical
Sciences
Web: http://www.muhealth.org/-patholagy
Phone: (573) 882-1201
Plant, Insect \& Microbial Sciences http://Mww.plantsci.missouri.cdu
Phone: \{573\} 882-9001
Radiopharmaceutical Sciences
Institute
http://www.muhealth.orgi/-rsi
Phone: (573) 882-2557
Veterinary Pathobiology
http://ownw.cevm.missouri.cdufypbio
Phone: $\{573\}$; $882-5034$

In some cases, diversity appears to be improving. Greg Dewey-vice president for academic affairs, dean of faculty, and Finnigan Professor at the Keck Graduate Institute-says, "I would say that the most improvement over the last 10 years is in gender diversity. In the biological sciences, we are seeing much stronger participation by women, and that's creeping into chemistry. Math, physics, and engineering are not as diverse as you would want them to be. But we are seeing more women in biomedical engineering." He adds, though, "At the Ph.D. level, you are getting more gender diversity, but you're still not seeing a lot of women in higher rank academic positions."

Dewey also says, "Racial diversity is still a problem." He points out that academic science depends on a multicultural society. "Yet, you still have a problem with racial diversity in America, and that will be an ongoing problem because the pipeline of candidates is far from full."

For most young people, career aspirations often depend on role models. Scientists need that, too. "The main issue is getting people to become faculty members," says Basri, "and they might not enter the field if they don't see a lot of role models." He adds, "Young faculty members look to see if an institution looks like a congenial place to work, and they need to see someone they readily identify with there." Dewey agrees, saying, "Young faculty members need role models and mentors. If you don't have those role models in senior roles, that is a real problem."

Increasing Variety

In some medical fields, however, more diversity appears. Harry Selker, executive director of the Institute for Clinical Research and Health Policy Studies at Tufts-New England Medical Center, runs a cross-disciplinary, clinical research program. He says, "In clinical research, there are more members of the minorities and women in general internal medical research and health services than in subspecialty-oriented and bench-oriented research." He adds, "Traditionally, health services research has attracted people with social concerns that they wanted to see addressed, which may also explain the greater diversity."

Selker works in an extremely varied intellectual environment. His institute includes economists, political scientists, and sociologists as well as traditional clinical investigators, statisticians, and informatics experts. He says, "We feel strongly that there is a crucial advantage to an institute and a particular lab when it has a diversity of disciplines, from social to biological sciences." Still, that disciplinary diversity fails to meet all of Selker's criteria for a balanced environment. He also looks for what he calls personal diversity. "Different kinds of people-introverts and extroverts, detail-oriented and big-picture people, for exam-

Post your resume online at www.sciencecareers.org. It's confidential.

ples-have different strengths," Selker says. "This turns out to be important because it provides a span of perspectives and thinking styles. We've benefited from that."

Other scientists also believe that diversity extends beyond who scientists are to what they do. Craig Shimasaki, president and chief executive officer at InterGenetics, says, "A fully integrated diversity of disciplines is absolutely critical to science, but it is not yet fully embraced." He goes on to say, "People tend to fall back on what they are familiar with rather than expanding or broadening an approach to a problem. Instead, they just go deeper into what they've already done before."

Some studies-including the research on the predisposition to breast cancer being done at InterGenetics-demand an integrated team of scientists with a wide variety of skills. Shimasaki says, "We bring together geneticists, statisticians, and mathematicians with our molecular biologists." This is necessary, since approximately 90 percent of the women who contract breast cancer do not have a strong family history of the disease. "To tackle this disease," Shimasaki says, "you need to know the risk carriers." Right now, Shimasaki and his colleagues believe that this requires a cross-functional combination of biological and informatic sci-ences-a diversity of disciplines.

Instead of just being a numbers game, though, diversity can be an industrial culture. Jill Mueller, group vice president of human resources for the global pharmaceutical products group at Abbott, says, "We greatly value diversity of all kinds, including race, gender, and disabilities. It is absolutely key to our business and has been for as long as I can remember." She adds, "Just the other day, we were laughing that our campus looks like the United Nations because of the diversity of our people."

Enabling Disabilities

"A great many people who talk about diversity do not think it includes disabilities," says Virginia Stern, director of the AAAS Project on Science, Technology, \& Disability and director of ENTRY POINT! The AAAS Project on Science, Technology, \& Disability will celebrate its $30^{\text {th }}$ anniversary at the association's annual meeting in February 2006. Stern says, "All these years, we've worked to bring role models to the forefront, but there is a shortage of role models with disabilities." To help create more role models in the future, Stern and her colleagues provide technical assistance to students, employers, families, and counselors. This project also publishes the Resource Directory of Scientists and Engineers with Disabilities, and the fourth addition is due out soon. Stem says, "This is the best and only source of role models."

In addition, ENTRY POINT! seeks out talented students with disabilities and arranges paid internships. "We have come to believe that these internships are critical in the pipeline for the companies," says Stern, "because they have a chance to know students with disabilities, working with them over the summer. It is really an CONTINUED 》

Scios Inc., headquartered in fremont, California, a member of the Johnson \& Johnson family of companies, is changing the way heart failure is treated. We are developing new and exciting therapeutics for cardiovascular disease, inflamrnatory disease and cancer. Our winning combination of Integrated research, cilnical experlence, and passlonate commiltment to patlents wilth unmet medical needs is making a difference in the management of disease. Innovation, collaboration and education are the cornerstones of Sclos' culture.

We provide mentoring and career development opportunitles throughout cur organization. Our abilly to grow as a company depends on finding and nurturing individuals with entrepreneurlal spirit and passion to change the way patients are treated.

To support our continued growth, we seek candidates in the following areas:

CLINICAL RESEARCH

- Cllnical Dafa Coder
- Clinical Research Assoclates
- Directors
- Lead - Clinical Dota Mangement
- Manager, Supervisor - Cilnical Supplles
- Managers
- Sclentist

RESEARCH

- Associate Director, Bioanalytics
- Post Doc - Cell Biology
- Managers - Bioanalytics
- Medical Writers
- Research Associates, Formulations, HTS, Analytical Chemistry
- Sclentists - Genomics, Informatics Toxicology, Analytical Chemistry, Pharmacoklnetics

MEDICAL AFFAIRS

- Associafe Director
- Dlrectors
- Managers
- Medical Education
- Medlcal Witter
- Manager, Medical Education
- Senlor Blostaristiclan, Lead, Associate Director - Blostatistics

REGULATORY AFFAIRS

- Associates
- Directors
- Managers

QUALITY CONTROL QUALITY ASSURANCE

- Anclysts
- Specialist

For more Intormation about us, to view a complete job description,
and to apply online. please vist us at:
www.sciosinc.com
Equal Opportunity Employer

diversity
 Broadening the Breadth of Science

entry point into the professions." This program receives private support from IBM and Merck, plus public support from NASA and the National Oceanic \& Atmospheric Administration.

Today, the impact of decades of advocacy for people with disabilities can be seen in many institutions. At Tufts-New England Medical Center, Selker says, "One member of our research group was hit by a falling tree and became paralyzed and wheel chair bound." To help this scientist, Selker and his colleagues secured a grant supplement to her NIH grant and created a new entrance ramp to the building and changed doorways on her floor-all to make the facility more accessible. "It's all about treating people the way you want to be treated," says Selker. He adds, "NIH provided the supplement, and it was relatively easy to get it funded. NIH was a great partner in this."

Other universities also work to make life easier for scientists with disabilities. At Berkeley, Basri says, "My department right now has a quadriplegic student." He adds, "Berkeley in general is especially friendly toward people with disabilities. There is lots of help for them, and it is a pretty friendly place for that." Basri also mentions that people with limited mobility can focus on computer based research.

Removing the Obstacles

To make today's world of engineering and science even more friendly to people with disabilities, Stern says, "You need a champion, someone who knows that diversity includes disability." She explains that a manager in a company or agency who had a positive experience with a disabled scientist, engineer, or student becomes a champion. She adds, "Internships make it so managers and mentors gain experience that someone with a disability can be productive, creative, a team player, and an outstanding problem solver. In fact, anyone with a disability from birth or an accident develops persistence, which is basic to science and provides the ability to think out of the box."

Many of the obstacles for a person with a disability start long before reaching a professional career. So Stern and her colleagues reach out to students all the way down to preschool. She says, "We show them that science and engineering are viable careers. If counselors don't think science and engineering are possible careers then they are not going to encourage students with disabilities to get in college prep math courses. Then, when these students get to college, some doors are already closing. It takes an extra effort." Sometimes that effort includes assistive technology.

Disabilities can also affect scientists later in their careers, just from aging effects. Stem says, "I get calls several times a year from AAAS members who are losing their vision." She adds, "Sometimes a spouse or partner calls and realizes that the scientist is getting increasingly frustrated because he or she cannot read anymore or cannot read comfortably." In those cases, Stern and her colleagues put the person in touch with experts who can help.

Spreading Diversity
Understanding the state of diversity can be easier than improving it. Moreover, the problems stretch from the past and into the future. Basri says, "The real problem is in grades K-12, and scientific leaders don't have much control over that. Still, we can work with K-12 leaders to see what we can do." He adds, "The state of science education in this country affects the under-represented populations more than others."

Still, Basri sees things that can be done. "Leaders can point out when they have found something that works, and share it with other leaders." Nonetheless, he adds that search committees must pick from small pools, in terms of underrepresented populations.

Dewey of the Keck Graduate Institute also sees potential approaches to improving diversity. He says, "Top scientists are incredibly influential, probably more so than they realize. They can be champions for young people and really help their careers." In addition, the Keck Graduate Institute also makes life easier for young faculty members by using a contract system, instead of tenure. For example, Dewey says, "We had a woman who came to us as an assistant professor, and she had a child in the year of her arrival. She negotiated that upfront, but she even said that she never would have done that in a tenure system."

At Abbott, Mueller sees many things that employees do to improve the company's diversity. She says, "We have several forums and networks that are employee-run and sponsored by executives. They include the Black Business Network, Chinese Culture Network, Women Leaders in Action, and others." She adds that these groups can make a large company seem like a smaller place that employees can navigate. "It is very important for scientists to meet colleagues in functions outside of R\&D, as well as in the lab," she says.

Following the Results

Although one of the first steps to increasing diversity involves improving the breadth of backgrounds in an organization, other steps remain. Basri at Berkeley says, "Once you get more diversity in a department or institution, it is essential that you pay attention to whether those people are flourishing." So keeping track of a diverse staff makes the difference between success and failure.

In the end, making sure that a staff is diverse and productive enhances any organization. "The importance of innovative science is key in any industry," says Mueller. "That's how we run our business, because that diverse experience from different areas and countries is critical to moving innovative science forward."

Mike May (mikemay@mirdspring.com) is a pubtishing consultant for science and technology based in Modison, Indiana, U.S.A.

The Gerstner Sloan-Kettering Graduate School of Biomedical Sciences offers the next generation of basic scientists a program to study the biological sciences through the lens of cancer - while giving students the tools they will need to put them in the vanguard of research that can be applied in any area of human disease.

Gerstner Sloan-Kettering
Graduate School of Biomedical Sciences

PhD Program in Cancer Biology
An Internationally Recognized Research Fatculty in:

- Cuncer genetics
- (renomic integrity
- Cell signaling and regulation
- Siructural biology
- Immunology
- Chemicill biology
- Developmental biologer
- Computational biologe
- Ixperimental therapenrics
- Experimental pathology
- Imaying and radiation sciences
- Oncology
- Cenomics
- Animal models of discase

An Innovative, Integrated Curriculum Pravides
a Fundamental Cnderstanding of:

- The nature of penes and gene expression
- Cellular organization
- (cll-cell intecractions
- Cellular response to the
- Tissue and organ formation
(

All Matriculated Sturlents Receive a Fwll Fellowship Pachage for the Duration of Stucly.

New York City

Please visit our Web site to learn how to apple, for application deadlines, and for more information aboul our PhD) program.
www.sloankettering.edu
gradstudies(es)sloankettering.edu | 646.888.6639

New Faculty Positions in Biomedical Sciences

The Lniversity of Georgia is dramatically expanding is research programs in interdisciplinary biomedical and healdin sciences and is remuiting tenure track or tenured faculty in a number of related areas. This exciting initiative is marked by expansion of the Biomedical Headilh Sciences lnstitule, dhe opening of the Pial D. Coverdell Center for Inerdisciplinary Biomedical Studies, the establishment of anew College of Public Heallh. the development of new. state-of-the-ant bio-eonainment facilities for sludies of animal and human headih, and increasing emphasis on quanitative approaches to biological and medical problems. The L'niversity secks to expand exisling slrengths by recruiting facully in the following areas:

- Genetics of complex traits relevant to human health and disease
- Pathogenesis, bioinformatics or host cellular response to emerging and re- emerging bacterial infectious diseases
- Immunology
- Molecular epidemiology
- Public Tealth: hiostatistics, epidemiology, and health policy
- Systems hiology, especially comlined use of experimental and computational approaches to studies of signaling in complex contexts, such as cancer
- Glycoscience, especially glycosaminuglycan structure/function, glycu-immunology, cell/developmental, cancer or chemical biolugy
- Druy discovery

Suecessful candidates will have the opportunity to participate in a rich interdisciplinary and eollegial environment provided by the center and inslitule structure al LGA (deseribed at http://www.uga.edu/ research/centersi.html), and to benefil fiom parmerships involving nearby inslitulions. including the Cenlers for Disense ConIrol and Prevention. He Medical College of Georgia, Georgia Ieeli and Emory University.
Applieants for any of these positions must have an advanced degree (1HDD. DVM. MD or equivalent). Suceessful candidates will be expected to establish nationally recognized. extemally funded research prograns and conntibute to teaching in undergaduate, graduate and professional training programs.
For more infomation regarding these positions, and for application instrusions, please visit: http: //www.ovpr.uga.cedu/facultypositions/.

BIOCHEMISTRY FACULTY POSITION

Albert Einstein College of Medicine

The Dejt. of Rinchemistry at the Alloert Einstein College of Medicine, Yeshiva University, is seeking a tenure-track Assistant. Protessor. Applicaris should demonstrate novel and irnovalive approaches in research. Research programs wilt focus orn furndamenlal queslions of hinogical chemistry with links to human disease are desirable.
Our laculty has exceptional and expanding research programs in structural biochemistry, systems and computational biologs, chemical biology membrane proteins, metabolic regulation, dyrianics in catalysis, largel idernificalion, calalylic mechanisms, proleinnucleic acid irleraclions, gernelics, inthibilor design and anlibiolic resislance mecharismis. Selected research programs will be expanded into a new center for genetic and translational medicine now under construction.
Candidates are exprected to have a PhD or YD degree, prostdoctoral experience and a strong publication record. Applicants should send a curriculum vilae and a summary of research plans as a single PDF file Lo: BCsearch05@ medusabioc,aecom.yu.edu. Lellers From three or more references should be seril to the same address or to: Search Committee. Dept of Biochemistry, Alhert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Brons, NY 10461. EOE

The Unversity of Georgia is an Affirmaive iciion and Equal Opporinaity Employer:

SOOTT \& WHITE

College of Medicine The Texas A\&M University System Heralun Science Center

Pediatric Hematology-Oncologist

The Section of Pediatric Hematology/Oncology at Scott and White Clinic and the Texas A\&M University System Health Science Center College of Medicine (TAMUS HSC-COM) are seeking a clinician scientist with current research grants for a faculty position in a rapidly growing program. The candidate should be $\mathrm{BE} / \mathrm{BC}$ in pediatric oncology and committed to an academic career. The successful candidates will join and enhance ongoing efforts in basic and translational research, with an institutional commitment to building a world-class experimental therapeutics program. An outstanding start-up package includes high quality laboratory space, excellent benefits and competitive salaries commensurate with academic qualifications. The position guarantees 75% protected time for research activities.
Scott \& White Clinic is a $500+$ physician directed multi-specialty group practice that is the leading provider of cancer care in Central Texas. Scott and White Clinic and the 486 bed tertiary Scott \& White Memorial Hospital is the main clinical teaching facility for TAMUS HSC-COM. Outstanding clinical practice and laboratory facilities on campus that perform state of the art molecular and cellular biology research, flow cytometry, genomics and biostatistics are in place to support the research effort.
Please contact: Don Wilson, M.D. Professor and Chairman, Department of Pediatrics, Scott \& White, 2401 S. 31st, Temple, TX 76508. (800)725-3627 dwilson@swmail.sw.org Fax (254) 724-4974.
For more information about Scott \& White, please visit www.sw.org For Texas A\&M www.tamhscedu. Scott \& White is an equal opportunity employer.

Instructor or Assistant Professor Faculty Position Building Interdisciplinary Research Careers in Women's Health (BIRCWH) Scholar

Brigham and Women's Hospital, Buston, MA is the hume site for a 1 larvard-wide training grant initiative called "Llommones and Genes in Women's Healhi: From Bernch to Bealside." We are pleased to invic applications for a full-tine or part-ime faculy position for an MD or PhDisch to develop an academic career in women's health. Specifically, this NIH-sponsored training grant will supporl scholars involved in investigatiog the role of homones and genes in understanding sex differences in vulnerabilities to clinical disorders and those disorders specific to women. Polential Scholars investigaling sucio-ctivirommental fielors modulating the impact of hommones and genes in understanding these sex-specific vulnerabilities will also be considered. Scholars will be sponsored for up to five years of mentored rescarch from Harvard faculty in basic, translational, or clinical aspects of women's health, and will combine, if applicable, clinical work in the Scholar's specialty. Successful applicants will have prion relevant rescarch traning in rescarch methodology, potential to obtain independent researeh funding and evidence of publication in peer-reviewed jownals. Faculty appointments will be at the Instructor or Assistanl Professor kevel, commensurate with qualifications.

Applicalions are aceeptal until January 10, 2006. To apply, plase email or mail (CV and a 2-3 page swmary on background, research interests and goals to: Dr. Ulsula Kaiser, Program Director, at BIRCWH@partners.org. Division of Endocrinology, Diabetes, and llypertension, Brigham and Women's llospital, 221 Longwood Avenue, Boston, MA 02115.

[^16]

Discover the many small-company environments behind the big-company impact of the Johnson \& Johnson companies.
find more www.jnj.com/careers

You're an achiever and you're passionate about your work. You have leadership ability and want to make a difference. You understand the advantages of a small company compared to the opportunity and reach of a global organization. You wonder which environment will be best for unleashing your potential.

Who says you have to choose?

Within the Johnson \& Johnson Family of Companies you can experience an entrepreneurial atmosphere that encourages teamwork and innovation-in fast-paced environments that have the feel of a small company-where people are empowered to grow as leaders and to drive their own careers. But you'll also find the impact of the world's most comprehensive and broadly based manufacturer of health care products.

"Discoveries made at St. Jude have changed the way the world treats children with catastrophic diseases. Treatments that would not be possible without a diverse and highly motivated staff of dedicated individuals."

Writh the risht comburuation of peoples, progress and persistence, we Lath athicve our missiom of finding tures for calastrophice diseases Ifroush Ireatment and reseanho. Si. Jude offers a wide variety of rewarding carcer orporlutitics in basic and climizal rescarch.

Biochemistry

Chemical Biology and Therapeutics
Developmental Neurobiology • Genetics
Hartwell Center for Bioinlormaties and Biotechnology Henatology/Oncology • Immunology Infectious Diseases • Molecular Pharmacology Pharmaceutical Sciences • Structural Biology
Therapeutics Production and Quality
If you share our passion and believe in our mission, then you belong here. For more information about what it is like to work here and to apply for a position with us, please visit our website at www.stjude.org/jobs.

St. Jude Children's Research Hospital alsac- Duasy Themes, Fonates

```
www.stjude.org
``` An Equal Opportunity Employer

\section*{Q Penn}

Department of Microbiology Assistant Professor
The Department of Microbiology al the Chiversity of Pemnsylvania's School of Medicine sceks candidates for an Assistant Professor position in the tenure track. The successful applicant will have experience in the field of Genomics with if focus on bacterial pathogenesis or parasitology. Responsibilitics include developing a vigorous research program exploiting genomic-scule upproachen for the study of host-pathogen interactions, working on bacterial, fungal. or protozoan systems. Applicants must have an ML.D. or Ph.D degrec and have demonstrated excellent qualifications in Revearch.

The applicant must demonstrate excellent potential for an independent cafeer in academic research. In this context, "genomics" encompasses global, comprehensive, high-throughput, cost-cffective approaches to studying biological systems. Appointments will be within the Mictobiology Department, (htop//www.med.upenn. cdu/microifaculty.html) and Penn Genomics Institute (http//www. senomics.upenn.cdu/).

Please submit curriculum vitac and a brief statement of rescarch interests by January 1, 2006 to:

Scarch Committee c/o Margaret Kimble University of Pennsylsania, School of Medicine Department of Microbiology 3610 Hamilton Walk, Room 225 Johnson Pavilion Philadelphia, PA 19104-6076 mkimble@mail.med.upenn.edu
The Tiniversity of Pennsplania is an affinzarive action /equal opportunity empfoyer and is strongfy commilted to diversity. Minorities/Fentales/Individuals with Disabibities/leferans are encouraged to apply.

FALL 2006 Ph.D. PROGRAMS
THE
Scripps
DOCTORAL PROGRAMS IN THE CHEMICAL AND BIOLOGICAL SCIENCES
The Kollogg Schoal of Science and Technology at Scripps Research Institute will adrit highly qua if ed chernistry and biology students to the La do la, Ca iforn'a or the Jupiter, F orida carnpus to study
bic ogy, bophysics, cherica boo cogy or chemistry, emp of ng a tighy interd'scipl'nary approach including a customizad curr"cu um. The application dead ine far Fal \(20066^{\circ}\) s Janualy \({ }^{\circ} 2006\)
Estab 'shed in ' \(95^{\prime}\) ' Scripps Research Inst tute has galined internationa recognit on for basic research in cherm stry, structura, molecuar and coll boogy Graduate studies at Scripps Research Institute provide an except"ona träning opportunity in a uniquely mult'd'scipl|nary environrent with erphasis on nd vidua ized training
Cand "dates must have a bachelors degree and a strong background in b"o ogy. bicphysics, chervistry, or a re ated discip \({ }^{\circ}\) ne. Qua if ed app icants wi be minted to vis't the campus of admiss on. Financial support wil be provided to al students accepted into the program.

Ind"'dua s "nterested in app ying should v'sit Scripps Research Institute web stes: wowseripps.cdu or wowescripps.ciduiflor da or contact:

Kellogg School of Scence and Techno Jgy
The Scripps Research Instituts:
10555 N. Torrey Pines Rd. (TPC '9)
La Jolla, CA 92037
To : 858-784-8469 cmai : gradprgmeascripps. 2 du

 s.arents \(n^{2}\) a

\section*{}

\section*{Faculty Positions UMass Lowell Center of Excellence in Nanomanufacturing}

The Thiversity of Massachusetts Timell (IUMT) is conducting a search for several tenure-track faculty to stant in September 2006. Primary consideration will be given to candidates whose research expertise contributes to the NSF Namoscale Science Engineering Center for High-Rate Nanomanufacturing (www.uml.edu/chn) and the UML Nanomanufacturing Center of ExcelFence (www.uml.edu/nano). Candidates with sirong skills in micro- and nanotechnokong, particularly in arcas such as metrology and positioning, materials characterization, surface patterning, mierornanoscale heat tratsfer and huidics, polymer electroties and sensors, entergy conversion \& storage, multiscale modeling of polyners, polymer processing. and biological systems for manufacturing. are encouraged to apply. Candidates must have an earned doctoral degree in engineering. physical sciences. biological sciences, or related subjeets, as well as a combritment to research and leaching. at both the undergraduate and graduate levels. Positions are available at the Assistant Protessor level, hut more senior appointments will te considered for candidates with outstanding records of achievement. Applicaths are requested to send (electronic submission preferred) a curriculum vitie. statement of teaching and research interests. and a list of three references to: NCOE(auml.edu. Paper submissions should be sent to: Faculty Scarch Committer, Nanomanufacturing Center of Excellence, University of Massachusetts Lowell, One University Ave. Lowell, MA 01854. The review of applizations will begin on Tanuary 1,2006 and will eontimue until pesitions are filled. Taculty will be hired into a home department, hut will have an affiliation with the Nanomanufacturing Center. which includes a new building to be completed in 2008.
UMass Lowell is located approximately 30 miles Northwest of Boston. along the Merrimack River. To addition to leadership in the emerging areas of nammanufacturing, the toniversity has unique expertise in plasties and comperites proessing, polymerscictice, and health and envirommental issues in manufacturing, along with a string history of eillaborative research with industry. Please check the www.uml.edu/hr website for faculty postings awailable in other disciplines.

The Lniversity of Massachuseiis Lowell is an Equal Opportuning Aftormative Aciton, Titte A: H/V, ADA I IFO Emplojee:
"Our work is more than a job, it's a career of mission-focused investigation."

\section*{Work that matters.}

The CNA Corporation is a non-profit institution that operates on the principle of conducting impartial, accurate, actionable research and analysis to inform the important work of public sector leaders.

We offer career opportunities for people with degrees in engineering, mathematics, economics, physics, chemistry, intemational relations, national security, history, and many other seientific and professional fields of study.

Diverse views, objectivity, imaginalive lechniques, process driven, results oriented committed to the common gond. Join us. wwwena.org

\author{
The CNA corporation \\ Research that works. for work that motters
}

\section*{Faculty Positions in Bioinformatics}
at Ecole Polytechnique Fédérale de Lausanne (EPFL)
The Sohool of Computer and Communication Sciences and the Sohool of Life Scictices at EPFL invile applications for facully positions in bioinformaties at the tenure track assistant professor and temured associate and full professor Ievels.
Suceessful candidates will develop an independent and creative tescatch program, participate in both undergraduate and graduate teaching, and supervise PhJI students.
Candidates from all areas of biointormatics will be considered, but preference will be given to candidates with interests in comparative genomics, protein modeling, and drug design.
Significant start-up resources and reseanch infrasturcture will be available. We offer internationally competitive salaries and benefits. To apply; please
 The following docunctis are fequested in PDF fontnat: cutriculum vilic: including publication list, brief statements of research and teaching interests as well as the names and addresses (including e-mail) of 3 felfernees for junior positions, athd 6 for sctior positions. Screcting will stath on Jannary 31, 2006. Futh het questions can be addressed to:

\section*{Professor Willy Zwaenepoel}

Dean
School of Computer \& Communication Sciences
EPPI.
CH-1015 Lausame, Swizerland
recruiting.ic \(\bar{a}\) ap fl .ch
For mote inlormation on EPFL: hltp://www.cpll.ch liPFI is an equal opportunity employer.

I matter because my work is integral to the research conducted here - to the innovative therapies developed here. In our research labs. our multidisciplinary team of chemists and biologists work to design new and effective compounds that will be tested in our clínical research programs.

I matter because I have something to offer. To the world, my colleagues, and to myself.

As the world's third-largest pharmaceutical company, sanofi-aventis is enriched by a mosaic of talent. With courage and respect, approximately 100.000 employecs in over 80 countries have. carned us global presence and prestige - contributing to a product portfolio and pipeline that will improve the health of millions worldwide.

We hire highly qualified individuals in these areas of specialty:
Clinical Research
Clinical Planning
Toxicology
Molecular and Cellular Biology
Clinical Project Management
Genomic Sciences
Biostatistics
Protein Sciences
Data Management
Quality Assurance
Chemistry
Analytical Sciences
Medical Writing
Regulatory Affairs
Pharmacokinetics
Pharmaceutical Development
Pharmacology
Pharmacovigilance
Informatics
At the heart of all that matters are people, connected in purpose by carcer, by life., and by health.

Find your niche with sanofi-aventis.
Explore our opportunitics online.
WWW.careers.sanofi-aventis.us
An equal opportunity employer, sanofi-aventis cmbraces diversity of thought and culture to foster positive, innovative thinking that will benefit people worldwide.

sanofi aventis
Because health matters

\section*{CHAIR}

Department of Medical Pharmacology and Toxicology
The L'niversity of Califormit, Devis School of Medicine is seeking candidates for the Chair of the Department of Pharmasology and loxicology. We seek an outstanding scientist wilh a superb reeord in researth relevant to academic: pharmateology to provide visionary and dynamic leadership to at vibranl and young deparmenl. 'Hhe deparment is housed in the newly opened Genome and Biomedical Science Facility on the Davis campus, and has strong links to the new UC' Davis Gienome Center. The candidate should have a strone vision for basic science, and be prepared to lead the department in the Sehool of Medicine's multi-departmental quest for excellence. The candidate should have demonstrated ability to meet the challenges of academie medicine and to work cooperatively and collegially within a diverse environment.

The Chair will lead a department that currently has 10 full-time faculty, nine of whom have joined the department within the last two years. Additional information about the department is available at: http://som.uedavis.edu departments/pharmacology/. The Chair will also be responsible for continued growth of the Department, with the addition of 3 new state-funded tenure lrack faculty positions. Eich new position will beaccompanied by the resoures needed to ensure recruiment of outstanding faculty.
The suecessful tandidate will be an inlemationally recognized scientist with an aselive research progran who hids a demonstrated record of leadership. in research, education, mentoring. and administration. and who qualifies for appointment at the Full Professor level. The eandidate must possess a Plı.D., M.D. M.D. iPh.D. or equivalent. Ihis is at state fimded position (F'IE) within the Selool of Medicine.

Please forward: (l) cumiculum titae: (2) statement of research and adminisisative back ground; and (3) names and addresses of five references to: Phannacology Chair Search Commitlee, vitemail to Janice. weirégucdmentavis.edu, or vit regular mail to: Janice Weir, efo Office of Academic Affairs, School of Medicine, Cniversity of C.alifornia, Davis. Medical Center, PSSB Suite 2500,4150 Y Street, Sacramento, CA 95817 . For full consideration, applications must be received by January 31, 2006. The position will remain open until tilled throush June 30, 2006.

The Tinnervilu of Catifornia is un Affirmutive Action'
Efgat Ofporlunitu Fmphover

\section*{Associate Laboratory Animal Veterinarian Division of Comparative Medicine New England Primate Research Center Harvard Medical School}

The New England Primate Researeh Center (NT:PRC') of Itarvard Medical School has an immediate opening for a Laboratory Animal Veterinarian in the Division of Comparative Medicine. The academic appointment will be at the Research Associate:Instuctor level in the Department of Pathology at Harvard Medical School. Responsibilities will include providing elinieal care and velerinary support for a colvny of more than 1.800 animads representing 9 species of Old and New World primites.
The NEPRC fosters a highly interactive and mulidisciplinary research environment. and faculty in the Division of Comparalive Medicine collaborate extensively with core scientists as well as investigators through out the New England region. Faculty hive long skinding and well funded prograns focused on behavior. neuroscience and infectious disease research. The veterinary slaff is highly encouraged to pursue such independent or coltaborative researel. The Division of Comparative Medicine hats excellent infiastructure to support both clinical and experimental medicine including recently completed and state-of-the-art laboratory, veterinary and biocontainment facilities. Minimum qualifications include a DVM (or equivalent). Previous experience with nonhuman primates is desirable and individuals with independent researeh experience are encouraged to apply
The NIPRRC' is located in rural Southborough, MA approximately 25 miles west of Boston, and in the heart of New Tingland. Salary will be competitive and commensurate with experience. Additional information may be obtained at our website: http://www.hms.harvarileelu/nerpred. To apply, send a letter indicating interests andexperience, a curriculum vitae, and the names of three individuals who may be contacted for references to: Keith Mansfield, DVML, Division of Comparative Medicine, New England l'rimate Research Center, Harvard Medical Schoul, One Pine Hill Drive, P.O. Box 9102, Southborough, MA 01772-9102.

Harvord University is an Affirmaine Acion and Equal Opporinhit Educaior and Employer. Women and individuals from onder-represenied minorities are strongly enconraged to apph:

The Faculty of Chemistry: Pharmacy and Earth Sciences at the University of Freiburg invites applications for a

Full Professorship in Physical Chemistry (German W3 level, successor to Prof. G. Kothe).

The position is available from October 2006. Candidates are expected to teach physical chemistry at all levels and to represent the field scientifically. We seek a molecular spectroscopist with a high international reputation. Due to the faculty's focus on materials and life sciences, preference will be given to candidates that can contribute to these fields.

In the case of a first appointment to a university lectureship, the position is initially limited to a time interval of five years, a prolongation is subject to a positive evaluation. This limitation can be relaxed for candidates from abroad or from outside a university.
Freiburg University is an equal opportunities employer and particularly invites applications by female and handicapped scientists, which will be given preference provided they have a corresponding qualification.

Applications must be received at the following address by January 5 \(5^{\text {th }} 2006\) : Dekan der Fakultät für Chemie, Pharmazie und Geowissenschaften, Universität Freiburg, Hebelstr. 27: D-79104 Freiburg im Breisgau, Germany.

\section*{Faculty Positions \\ UNMC Eppley Institute for Research in Cancer and Allied Diseases}

The F.ppley Institute for Research in Cancer and Allied Diseases, a multi-dise iplinary cancer research institute at the University of Nehraska Merlical Center (UNMC), invites applications for temure-leading positions at all levels. We seck candidates with outstanding record of research achicwement with interests relevant to cancer researeh including, but not limited to: contmol of cell growth and death, regulation of gene expression, oncogene and tumor suppressor function, umor inmunology, animal models. melastasis and angiogenesis. chemieal tiology. eancer eliology and chemoprevention. We encourage applications trom researchers focusing on basis molecular and eellular mechanisms, as well as those focusing on molecular therapeutics and specific disease models.

The Eppley [nslitule for Research in Cancer and Allied Diseases. an integral part of bolh the Lniversily of Nebriskat MedicalCenter and the L'NMCC Cancer Center (NCl -designated Cancer Center). conlinues aggressive rectuitment of ouslanding scientists in several areas of scientific prionity. The listitule provides a supportive enviroment that foslens creative. mulidisciplinary research with world-class laboratory facilities. state of the arl core facilities, and oustanding institulional and state suppori. New facully will find it collaborative scientific environment coupled with very competitive start-up, packages. Both pre- and post-doctoral fellowships are available for support of trainess. Omaha, the nation's 42nd largest city, offers an outstanding school system, low cost of living, and numerous recreational activities.

C'andidates should have a Ph.D. andor M.D. degree and postdoctoral research experience. Applicants can apply online to position 川̈ 0831 at https://johs.unmc.edu. Additional information can be found at http: //www.unmc.educancercenter!. Candidates should also fonward a minimum of 3 letters of reference to: Search Committee, Eppley Institute for Research in Cancer and Allied Diseases, Attn: Matt Winfrey, Cniversity of Yebraska Merlical Center, 986805 Nebraska Merlical Center, Omaha, Nebraska, 68198-6805.

The Winivervifl of Sebraska Medical Center is an Fquat Opportunilu Employer.

\section*{UNDERGRADUATE SCIENCE RESEARCH SCHOLARSHIP AWARDS}
- 15 Awards Annually
- Scholarships up to \$25,000
- Two Summer Internships at a Merck Research Facilily

An applicanl must:
- Be a full-time student at any four-year college or university
- Have junior year academee status
- Hajor in a life or physical srience (first professional degrees cexeluded)
- Have a minimum cumulative GPt of 3.3 (4.0 point seale)

\section*{GRADUATE SCIENCE RESEARCH DISSERTATION FELLOWSHIPS}
- 12 Fellowships Annually
- Fellowship Stipends up to \(\$ 42,000\)
- Department Grants of \(\$ 10,000\)
- Support for 12-24 months

An applicant nuust:
- Be enrolled full-time in a I'h.I. or ecquivalent doctoral program in a biomedical life or physical science
- Becngaged in and within 1-3 years of completing dissertation research

\section*{POSTDOCTORAL SCIENCE RESEARCH FELLOWSHIPS}

\author{
- 10 Fellowships Annually \\ - Fellowship Stipends up to \(\$ 70,000\) \\ - Department Grants of \(\$ 15,000\) \\ Support for 12-24 months
}

Au applicant musi:
- Hold a I'h.I), or eçuivalent degree in a biomedical life or physical srience
- Beappointed as a new or continuing postdoctoral fellow by the end of 2006 at an academic or non-academic research institution (private industrial laboratories are exeluded)

Applicants must be A('rican American (Black), L.S. cilizens or permanent residents, and allending an institution in the L.S.A. Applications must be postmarked by December 15, 2005 For application forms and more information, please contact your department ehairperson or Jerry L. Bryant, Ph.D., at the Linted Negro College Fund, 8260 Willow Oaks Corporate Drive, P.O. Box 10444, Farlax, VA 22031-4511,
by fax (703) 205-3574, by e-mail at uncfmerch(ounf.org. Apply online or download from our welvile al wow mhef.org/mered

\section*{Tenure-Track Faculty Position, Microbia Pathogenesis, Yale School of Medicine}

The Section of Micobial Pathogenesis of the Yale School of Medicinc is secking applicants for a tenure-track faculty position at the Assistant Professor level. Applications at other ranks from roure established investigators with a strong record of accomplishreents will also be cousidered. We are seeking applicarts usinge rullidisciplinary approaches to investigate host pathogen interactions. Individuals sludying viral, backerial, or protozoan urganisms whe are inkerested in the ecell biology or immunobiology of host infection are encouraged to apply. The position offers an allawlive start-up package, excelken laburatory space and a stimulating scientific research envirumiment. Candidates should have a Ply.D. andior M. D. degrees, suitable postdoctoral research experience, a strong record of rescarch accomplishnocnts, a commitrome to develop independent, innovative researeh programs, and an interest in graduate and rexedical education.

Applicants should submit, a curriculum vitae; a stidernent of curcen and future rescarch interests and arrange to have three letters of reference sent w: Chair, Search Committee, Section of Microbial Pathogenesis, Vale school of Medicine, Boyer Center for Molecular Medicine, 295 Congress As. New Haven, CT 06536.

\section*{Nebraska Medical Center}

GRADUATE PROGRAM

\section*{Graduate Studies in the Life Sciences}

\section*{NEBRASKA'S HEALTH SCIENCE CENTER}

Graduale programs in the life sciences are offered at the Lniversity of Nebraskal Medical Center (UNMC) in Omaha, Nebraska. Studies leading to the Ph.D. are available in eight basic seience programs and one integrated, interdepartmental training program (MSIA). In addition, the BRTP may be used as a common entry path for most of the basie science programs. Numerous training and researeh grants as well as signiticant internal funding sourees support students in these degree programs. In the 2005-2006 academic year, most full-time Ph. D. students are being supported by a stipend of \(\$ 21,000\) or more with remission of all tuition. Mest students begin their research rotations and orientation program in Tuly or mid-August.
The Ph.D. life science programs eurrently available at TTNMC' include:
Biomedical Research Training Program (BRTP; common entry program)
Biochemistry and Molecular Biology Pathology and Microhiology

Cancer Research
Cellular and Integrative l'hysiolugy
Pharmaceutical Sciences
Genctics, Cell Biology and Anatomy
l'harmaculogy and Experimental Neuroscience Toxicolugy
Medical Sciences Interdepartmental Area (MSIA)
Interesed students should visit LNMC al http://appl.unme.edu/gradstudies/. Apply online!
UNMC has cxperienced a rapid growth in the past five years with new researeh buildings and laboratories added to support the increase in researel activity. The campus is a modem, atademic heallh eenter consisling of four professional colleges (Medicine. Dentistry. Nursing and Phannacy), the Munroe-Meyer Institute. the Eppley [nstitule for Research in Cancer and Allied Diseases. and the Graduate Studies program. Our partar. the Nebraska Medical Center is the primary clinical tewthing site for LNMC. Our location in metropolitan Omahat allows convenient travel connections and a modest eost of living.
liformation regarding atl prograns. as well as an online application can be ascessed through the websile al http://appi.unmc.edu/gradstudics/. Questions about L'NMC Graduate Programs may be addressed to: David Crouse, l'hD, Executive Associate Dean for Graduate Studics, 987810 Nebraska Medical Center, Omaha, さE 68198-7810; phone: 402-559-6531; facsimile: 402-559-7845; c-mail: UNMCGraduateStudiestaunme.edu.

University of Nebraska Hetcical Center is an Equal Opportunin. Liffornative Action Eimployer: Minorities and Wonten are Encouraged io .tpph.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Postdoctoral Positions \\
National Institute of Child Health and Human Development
\end{tabular}} \\
\hline \begin{tabular}{l}
Epigenetic Regulation of Gene Expression \\
Katl Pfeifer. Ph.D., pfeiferk:aid. nih.gov \\

\end{tabular} & \begin{tabular}{l}
Molecular \& Cell Biology of Genetic Disorders of Bone \\
Joan Marini, M.D.. Ph.D. oidocethelix.nih.gov \\

\end{tabular} \\
\hline \begin{tabular}{l}
Cell Regulation by Phosphowositide Messengers \\
Tamas Balla, M.D., Ph.D., ballatiommail. nilh.gov hitp:/dir2.nichd nih. govinichdeRRB ERRBtextimolsigirans text. him
\end{tabular} & \begin{tabular}{l}
Scurcentins in Neuronal Plasticity and Schizoplirenia \\
Andres Buonamno. Pl.D., buenannoiemaill nih.gov \\
fitp:/ipp nih, goviResearclecr:Menbers: NICHD/AndresBuonanno. \\
litin
\end{tabular} \\
\hline Biology of RKA Hetalolism in Eukaryotes Richard Maraia. M.D., maraiar OMail nillgov hipp:/eclipse nichd nilh govinichd Marala Maraialabpage honl & \begin{tabular}{l}
Retrovirus Models in Yeast \\
Henry Levin, Plı.D., henry_ levinomilh.gov \\
hup:feclipse nichd nilh govinichdilyd sete:index. hitm
\end{tabular} \\
\hline \begin{tabular}{l}
Xutritional and Behavioral Aspects of Pediatric and Adolescent Ohesity Jack A. Yanovski. M.D., Ph.D., jyl5ilanih.gov \\
hup:/eclipse nichd nilh govinichd deb ugo ugo.hım
\end{tabular} & \begin{tabular}{l}
Biology of Skeletal Growth \\
Icffey Baron. M.D., jeffrey,baronanilu.gov hlep:uged nichd nih.govi'
\end{tabular} \\
\hline \begin{tabular}{l}
Middle Childhood and Early Adolescence \\
Mare H. Bornstein. Ph.D. Marc H Bernstein Qanih.gov hatp:/www.cff.nichd.nih.gov
\end{tabular} & \begin{tabular}{l}
Endocrinology Fcllow \\
lynnette Nicman. M.D., VienanLZnilu.gov hitp:/Www.training nilu govionlincappsitrainingprograns;applications:
CLIP AdList.aspx?AdD-TP-56
\end{tabular} \\
\hline & \\
\hline \begin{tabular}{l}
Postdoctoral Opportunities \\
Neuron-Glia Interactions \& Synaptic Plasticity National Institute of Child Heath and Human Development \\
Two openings: (a) Neuron-glia communication in nervous system development \& plasticity. (b) Electrophysiology of hippocampal LTP. Electrophysiologist must be experienced in hippocampal slice LTP for studics of intracellular signaling \& transcriptional regulation in synaptic plasticity. Neuron/glial biologist with experience in myclination or perisynaptic glia will study activity-dependent communication between axons and myelinating glia, \& glial involvement in synaptic plasticity. The laboratory utilizes DNA micro-arrays, 2-photon imaging, \& molecular methods to study intracellular signaling \& transcriptional regulation in activity-dependent nervous system development \& plasticity. Ph.D. \& \(<5\) years postdoctoral experienee required. Send CV, 3 letters of reference: \\
R. Douglas Fields, Ph.D., 35 Lincoln Dr., 35/2A211, Bethesda, MD 20892-3713 \\
ficldsd(a)mail.nih.gov / http://nsdps.nichd.nih.gov/
\end{tabular} & \begin{tabular}{l}
Health Scientist Administrator \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} \\
\hline
\end{tabular}

THE NIH IS DEDICATED TO BUILDING A DIVERSE COMMUNITY IN ITS TRAINING AND EMPLOYMENT PROGRAMS

\section*{National Institute of General Medical Sciences National Institutes of Health Department of Health and Human Services}

The National Institute of General Medical Sciences (NTGMS) in Bethesca, MD is seeking applications from outstanding candidates for a IIcalth Scientist Administrator (IISA) position in the Pharmacological and Physiological Sciences Branch within the Pharmacology, Physiology, and Biological Chemistry Division. The recruiting branch currently supports research and training into understanding the basis of traumatic and burn injury and the perioperative period, the molecular basis of action of anestheties, the mechanisms of and genetics underlying the actions of therapeutic drugs, and the development of predictive preclinical toxicology approaches.
The individual hired will be responsible for applying his/her clinical and research expertise to manage and develop research and training grants in NIGMS" broad areas of basic studies in pharmacological and physiological sciences, and to foster the translation of results from fundamental research arcas into clinical studies. The person should have experience gained in a medical research institution and understand how research is conducted with human subjects or patients in a clinical setting. A background in at least one of the following areas is preferred: trauma, injury and recovery, or clinical pharmacology, or immune system biology, or alternatively in a cross-cutting area such as studies of the role of inflammation in the disease process or of moleculat/cellular signaling in these systems. Lxperience in modern methods of genome or proteome analysis would also be desirable.
Applicants must possess an MD andior PhD plus scientific knowledge in the fields of pharmacology, physiology, immunology, systems biology, medicine, or related fields. Applicants must be familiar with both elinical and laboratory approaches in his/her own field(s) of expertise. Experience in the NTH peer review and grant award process would be beneficial. Salary will be commensurate with qualifications, may include a physician's comparability allowance, and will have a full package of bencfits. Detailed vacancy announcements NIGMS-05-100271 and NIGMS-05-100881 with the qualifications and application procedures are available at the NIGMS web page at http://www.nigms.nih.gov/about/job_vacancies.html. Questions about application procedures may be directed to Erin Bandak at 301-594-2324. Applications must be received by January 4, 2006.

\title{
Health Research \\ in a Changing World
}

Fighting Diseases and Improving Lives

\section*{Tenure-Track Investigator Position in Immunology and Related Fields National Institute of Allergy and Infectious Diseases National Institutes of Health (NIH)}

The National Institute of Allergy and Infectious Diseases (NIAID), Division of Intramural Research (DIR) is recruiting for a Tenure-Track Investigator in the Laboratory of Cellular and Molecular Immunology (LCMI). The NIAID is a major research component of the NIH and the Department of Health and Human Services (DHHS).

The Laboratory of Cellular and Molecular Immunology (LCMI) is seeking an M.D., Ph.D., D.V.M., or an equivalent degree for a tenure track position. Candidates with a strong record of creative scientific accomplishments, and those with a novel, progressive approach to the discipline are particularly encouraged to apply.
The successful candidate will have a unique opportunity to establish an independent research program at the NIH main campus in Bethesda, Maryland. This facility houses one of the largest immunological research communities in the world, with access to flow cytometry, confocal microscopy, mass spectrometry and microarray production. This position will have committed resources for space, a technician and two postdoctoral fellows, as well as an allocated budget to cover service, supplies, animals and salaries.
Salary will be commensurate with research experience and accomplishments. A full Civil Service package of benefits is available, including retirement, health, life, long term insurance care and Thrift Savings Plan.

Address any questions about this position to Dr. Ron 5chwartz at rs34ronih.gov. To apply, candidates must submit: curriculum vitae and bibliography, and a \(2-3\) page description of a proposed research program and selected publications, preferably via email to Ms. Felicia Braunstein at braunsteinfignaiaidnih.gov. In addition, three letters of recommendation must be sent to Ms. Felicia Braunstein, Committee Manager, NIAID, NIH; Bldg. 10, Rm. 4A3O, MSC-1349; Bethesda, MD 20892-1349. All applications must be received by December 1, 2005. All applicants will be notified by e-mail or phone when their applications are received and then complete.
We invite you to explore our Institute and other job opportunities at http://healthresearch.niaid.nih.gov/science.
Please reference "Science" on your resume.

\section*{CHAIR}

\section*{DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY}

\section*{ARIZONA STATE UNIVERSITY}

The Deparment of Chemistry and Biochemistry at Anzonat Stake University invites applications and nominations for the position of Department Chair:
 Phoenix metropolitan area, one of the fastest growing uban centers in the nation. Chemistry and Biochemistry at Arizona State Cniversity currently has

 has a historically strong record in interdisciplinary research, recognized by a series of nationally funded centers, and takes special pride in a collegial atmosphere bolstered by permeable boundaics between tralitional programs ame strong ties to relacel acalemic units including the Departneent of Physies, the Schowl of Earth and Space Expluration, the School or'Materials, the School or Life Scicnecs, and the BioDesign Institute.
The sucesssful candidate is expected to provike visionity leadership, to oversec grow in in the deparment fiwulty and rescareh prograns, to furlhes develop the
 and to maintain a productive research program. Candidates must have an eamed doctorate in chemistry, biochemistry, or a closely related field, achieved mational and incmational recognition for their scholarship appropriate to the rank of Professor, have a distinguished scholarly record, and be farniliar with the federal budget process and the strategic goals of the funding agencies. Desirable qualifications include documenteal leadership, previous administrative experience in a doctoral-granting department, a history of external funding, experience with program development in research and education, evidence of strong communcation and organizational skills, and evidence of commiment in working with and supporting a diverse student and faculy population.
The position is available beginning July \(1,206(6\), or as soon as possible thereafter. Salary and start-up will be competitive and commensurate with qualifications. Nominations for this position are being sought and will be noss helpful if received by December 9, 2005. Revicw of applications will begin on Jantary 5, 2006, ifnot filkel, applications will be evaluated every wo weeks thereafier until the seareh is closed. Applicants must submit electronically (in MS Word or PDF format) a cover letter and a current curiculum vitae to Ms. Roxana Martin (roxana.martingasu.cdu). Inquiries and nominations should be dirveled w: Robert Page, Director, School of Life Sciences, Arizona State Üniversity, PO Box 874501, Tempe, AZ 85287-4501; or cmail robert.page (i)asu.cdu. A background check is required for employment.

ASU is an A/formative Action Equal Opportunity Emplover:

The Department of Physics and Astronomy of the Ruprecht Karls-University of Heidelberg, Germany, invites applications for a

\section*{Professorship in Experimental Physics}

We are looking for an outstanding experimental physicist actlve in the field of atomic and quantum physios as well as related subjects in fundamental research. The position is equivalent to a chair in experimental physics. The new professor is expected to demonstrate a commitment to teaching excellence in both the undergraduate and the post graduate level.
The position is permanent. Candidates who have not served as a University Professor will initially be appointed on a fixed-term contract according to \(\$ 50\) Paragraph 1 UHG (University Law of the Federal State of Baden-W(0rtemberg), after which tenure may be granted without the necessity of re-appllcation. Exceptlons may be made for international or extra-university applicants.
The University of Heidelberg seeks to increase the number of qualified women in teaching and research positions and strongly encourages applications of women. Handicapped persons with equivalent quallflcatlons will be glven preference.
Qualifled candidates are Invited to submit thelr application untll 31.12.2005 with the usual documents to Prof. Dr. K. Meier, Dean, Department of Physics and Astronomy, Albert-Ueberle-Str. 3-5, D-69120 Heldelberg, Germany.

CSUB seeks an individual with vision and energy to become Dean of NSM and collaborate with our distinguished faculty in promoting excellence in research and teaching. The Dean will lead NSM in groundbreaking for a Math/Computer Science building and inaugurating master's degrees. NSM offers B.S. degrees in biology, chemistry, computer science and physics and B.S. and master's degrees in geology, mathematics, and nursing. Detailed description available at www.csub.edu/AcademicAffairs/FacEmp/NSM.pdf

\section*{Qualifications:}
- Doctorate and record to merit appointment as professor in an NSM discipline
- Academic administrative experience
- Success in external funding and building partnerships
- A record of effective collaboration
- Commitment to diversity

Applications accepted until position is filled. Interviews planned for January 2006. Appointment expected to begin July 3, 2006. Completed applications must include a letter of application, CV, and contact information for at least three references. Submit applications to:

Search Committee, NSM Dean
c/o Office of the Provost, 59 ADM
California State University, Bakersfield
Bakersfield, CA 93311-1022
CSUB is an Equal Opportunity Employer

The GBF and the MHH invite applications for presentations at a

\section*{Symposium on Experimental and Clinical Infectious Disease Research - Challenges and Clinical Applications -}

The German Research Centre of Blotechnology (GBF) In Braunschwelg and the Hannover Medical School (MHH), intend to set up a joint "Centre for Experimental and Clinical Infectious Disease Research" near the campus of the Hannover Medical School. The airm of the research centre is to establish itself at the forefront of infectious disease research and become a driving force in the translation of basic research into the development of new vaccines and antiinfectives.

\section*{In order to identify suitable candidates as \\ Director of Experimental Infectious Disease Research and Director of Clinical Infectious Disease Research}
a symposiurn will be organised for the \(16^{\text {th }}\) and \(17^{\text {th }}\) February, 2006. The symposium will allow candidates to present thernselves to an intemational advisory board that will support the subsequent recruitment process. Both positions are permanent and will involve appointment to a full professorship (W3) at the Hannover Medical School.

Following this symposium, candidates will therefore undergo the standard recruitment procedure for full professors as defined by university legislation in Lower Saxony. This procedure involves a formal application, an interview before a selection committee, and confirmation by the government of Lower Saxony.

In addition, there are two openings for the position of Head of an Infectious Disease Research Group
These positions will be at the W2 level (Associate or Junior Professor),
Furthermore, the Centre wishes to set up a junior research group and recruit a

\section*{Head of a Young Investigator Group of Infectious Disease Research}
- The appropriate candidate should work in the general field of infection research and have a sound scientific track record.
- Experience and interest in interdisciplinary work and translational research are essential.
- Development of a rigorous research program at the interface of basic experimental infectious disease research and cilnical infectlology is expected.
- In particular, candidates with expertise in the following areas are encouraged to apply: genetic susceptibility of infectious disease, molecular mycology, infection and cancer, persistent and chronic Infections.

Additional information about the Centre of Experimental and Clinical Infectious Disease Research is available at: www.gbf.de/translation

Please indicate on your application the position you wish to apply for and include the usual documents (CV, publications), along with a brief description (max of 10 pages) of the research programme you plan to implement.

Applicatlon deadIIne: Jan 6 \({ }^{\text {th }}, 2006\)
Please send your application to either:
Prof. Dr. Dieter Bitter-Suermann, President Hannover Medical School
Carl-Neuberg-Strasse 1
Prof. Dr. Rudi Balling, Scientific Director German Research Centre of Biotechnology (GBF)

30625 Hannover, Germany
38124 Braunschweig, Germany
Additional information can be obtained from
Prof. Dr. D. Bitter-Suermann
bitter-suermann.dieter \(@ m h-h a n n o v e r . d e, ~\)

Prof. Dr. R. Balling
bitter-suermann.dieter@mh-hannover.de, balling@gbf.de \(++49(0) 531.6181-500\)

St. Jude Childrens
Research Hospital

\section*{FACULTY POSITION IN HIGH THROUGHPUT SCREENING}

The Department of Chemical Biology and Therapeutics at St. Jude Children's Rescarch Hospital invites applicatious for a faeully posilion al the kevol of \(A S S O C L A T E\) NEMBER or MENBER. We anc specifieally sucking applicants currently leading eitablished research programs in the development and execution of high throughput enzymatic and/or cellular icreens for the discovery of novel small molecules.

The Department of Chemical Biology and Therapeutics is one of 1.5 academic departments at St. Jude ('hildren's Revearch [lospital. The Department include; laboratories focusing on parallel, medicinal, and analytical chemitry as well as new techoologies and disease biology. The iustilute facilitates ratuslational rescarch, aud has oulstading shared laboratory and elivical resouress that facilitate eollaborations annonge a highly collegial group of icientists. Fixtensive opportunities exist for collaboration with both clinically baied and batic research programs relevant to oncology and infectious diteate.

Appointees will lead a strong program in a multidisciplinary, thematically integrated Department focuied on the discovery and development of small nolvenkes for perturbing ecllular funclious - parlicularly in syskins relevant to pedialrie oncology and infeatious discase. Iudividuals will coulribule to one or more existing and ucw prograns al the instilution, ineloding the interdisciplinary rescarch prograns of Levelopincotal Therapeuties for Solid Malignancies, [lematological Malignancies, Infection \& [lost Defense, Molecular Oncology, Neurobiology \& Brain Tumor; Signal Tranduction, Transplabation \& Gene Therapy, Chemical Biology, or Cabes Prevention \& Connerol.

St. .Jude offers a very competitive package for this position, including a generous atartup allowance with newly remodeled space and equipment; laboratory resouress (as uccaded): and supporl positions. In addition, appointers have acess to a range of insititulional core facilitics for protcin and uncke acid chenistry, microamay analysis, genc knockout and transgeme lectmolonics, phannaeokinclies, aod development of animal models.

Those iuktested io joiume this nullidisciplinary deparlumen should arrange to have their CV, a brief pronpectua of research interests, and three letters of recommendation sent to:
R. Kip Guy, Ph.D., Chair

Departnent of Chemical Biology and Therapentics
S1. Jude Children's Research Hospital
322 North Lauderdale Street • Memphis, TN 38105
www.stjude.org

\section*{Faculty Position in C. elegans Molecular Genetics}

The Department of Genetics, Cell Biology and Development (GCD) at the University of Minnesota is conducting a search for an Assistant or Associate Professor using molecular genetic approaches in the nematode C. alegons to study furdamental biological mechanisms. The successful candidate will join a core group of active nematode researchers with diverse inkerests including developmental timing, sexual differentiation, intercellular communication, nervous system development, cell adhesion, and the cellular roles of myosins and the cytoskeleton. The C. clegans group has significant ties to an inketeparlmental Developmental Biology (:enter (DBC) (http://www.med.umn.cdu/dbe/). (GCD faculty exploit a varicty of genctic model urganisms, including furgi, algae, flies, zcbralish and mice. GCD is also home to the Tnicmational C. elegans Genelics Center.

The Department of GCD will provide a compelitive salary and start up package, plus excellent laboratory space, with access to state-of-the-art core facilities. The candidate must have a Ph.D. or M.D. and al least two years of postluctoral experience. Investigaturs studying any aspect of \(C\). clegans biology will be considered, with use of cutting edge technology, including gerivinics approaches, 10 address a fundamenkid probken screving ats an importann selection criterion. Emphasis will also be placed on the potential for interaction with existing research programs in (iCD) (http: //www.ged.med.umn.edu/) and the DBC. The persun seleeted will be expeced tw develop or expand upon an independent, excerially furdel research program and participate in the teaching mission of the departmonl. Applications will be revicwed, begining December 1, 2005, and will be accepted until the position is filled.

Plewse send a CV, a brice stancment of cument and future rescarch, and three letkers ofrefercice w: GCD C. elegans Faculty Search, c/o Mary Muwahid (muwaht01sumin.edu), University of Minnesota, Department of Geneties, Cell Biology and Development, 6-160 Jackson Hall, 321 Chureh Street SE, Minneapolis, MN 55455.

The Lniversity of Minnesota is on Equal Opportanity Educator ond Empleyer:

\section*{University of Pittsburgh School of Medicine} Department of Otolaryngology

\section*{Director of Auditory Research}

The Deparment of Owlarymgolugy at the University of Pillsbury School of Medicine is expanding its researol initiatives in the area of auditory science. Successful candidates possessing a PI.D. o M.D. degree will be expected to have established kankership in auditury research as well as develop and lead a hearing research program in a collaborative environment, through targeted recruitments. ()tolaryngology rescarch faculty have the opportumity to participate in several graduate programs as well as teach medical students, residents and fellows. Appointment will be at the Assuciate Prolessor or Professur kevel in the terure track commensurate with the qualifications of the candidate. Ioint appointment in the Departments of Newobliology or Nouruscience or Psychology and the Cenler for the Leuronal Basis of Cognition will be crecouraged. We offer a highly competitive start-up package, academic salary; fringe benefits, and state-ot-the-art facilities. The U-miversily of Pitsburgh provides ann exciting, vibrant, and highly interdisciplinary scientific community.

Qualified candidanes should sennl a leter of inkerst and comprehensive curriculum vitae to:

Imnifer R. (Sandis, M.D.
Professor and Vice Chair for Research
Department of Otolaryngology
University of Pittshurgh School of Medicine
200 Lothrop Street. EEI Suite 500
Pittsburgh PA 15213
boozerioupme.edu
The limiversify of Ditusturgh is an Affirmative Action.
Equal Opportanity Employer:

\section*{Virginia \\ \\ Tech \\ Dean, College of Science}

Virginia Polytechnic Institute and State University, known as Virginia Tech, invites nominations or expressions of interest for the position of Dean, College of Scietree.

Virginia lech is the setior land grant utiversity in the Commonwealth of Virginia with 21,627 full-tine undergraduates and 6,352 graduate students enrolled both on- and oft-campus throughout the state. The university's strategic plan sets ambitious goals to increase Virginia Tech's stature as one of the nation's leading research universities.

\section*{About the College of Science:}

The College of Science at Virginia Tech provides students with strong training in analytical skills and a comprehensive foundation in the scientific method. Outstanding faculty members conduct research and teach courses in eight disciplines leading to baccalaureate and advanced degrees: biological sciences, chemistry, economics, geosciences, mathematics, physics, psychology, and statistics. The college also offers acadenic advising and appropriate preparatory coursework for students interested in pre-medieine, pre-dentistry, pre-veterinary medicine, and scientific law.

In addition to traditional majors, the college offers a graduate degree it inaeromolecular sejence athd engineering, programs int nath-scale science and technology, computational science, and infectious diseases, and supports research centers-in areas such as biomedical and publie health sciences, macromolecules and interfaces, and eritical technology and applied seience that encompass other eolleges at the university. Allied disciplines emphasize the study of behavioral science as well as economic and strategic decision-making. The college is committed to providing research opportunities for interested students at all levels.

\section*{Position Responsibilities:}
- Advateing the vision for the college within the university's and college's strategie plans;
- Providing entrepreneurial leadership for the growth and development of academic, research, and outreach programs in the sciences;
- Further enhancing the diversity of the faculty, staft, researchers, and student body;
- Oreating a climate, organizational structure, and matragerial leadership tean that encourage all members of the college community to contribute positively and productively to departmental, college, and university goals;
- Developing and maintaining productive relationships with external constituencies-govemment agencies, corporate partners, alumni, donors, advisory board incinbers, and others;
- Serving as a vital member of the university's overall leadership team.

\section*{Required Qualifications:}
- Earned doctorate and a distinguished record of scholarly activity that would quality for rank of protessor in an academic department in the college:
- Demonstrated effective communication and interpersonal skills, ability to work effectively in collaboration with many constituencies;
- Hxperience in leading or managing a major tesearch progrann;
- Demonstrated successtul leadership in higher education.

\section*{Desired Qualifications:}
- Appreciation of the mission of a land-grant university;
- Vision and ability to advance the research agenda of the college and utriversity, with emphases on itterdisciplinary and eross-college initiatives;
- Ability to recognize and tale advatntage of rapid chatnges itn the forefront of science;
- Demonstrated effectiveness in platrting, administration, and persotnel and fiscal management;
- Record of accomplishment in recruitment and retention of outstanding taculty, including women and minority taculty, staff, and students:
- Successful experience, or demonstrated potential, in fund-raising, development activities, and collaboration with industry.

Candidates must complete an application on-line at www.jobs.vt.edu, posting 043179. Attach to the on-lite application a letter of interest that addresses the responsibilities and qualifications stated above, current curiculum vitae, and the names of three references. To be assured of full cotsideration, applications should be reecived by December 1, 2005. The position will be filled as soon after that date as possible. Please sec http://www.provost.vt.edu/Resources.html for helpful itformation for prospeetive faculty cotsideritig employment at Virginia Tech.

Nominations may be sent to: Dr. Mark MeNamee, University Provost and Vice President for Academic Affairs, Virginia Teeh, 210 Burruss Hall, Blacksburg, VA 2416i, mmenamee(igvt.edu.

Individuals with disabilities desiring accommodations in the application process should contact Swaic Karlin at skarlinoviedu or 541)-231-2350

 Institutional Transformation Award to increase the paticipation of wonnen in academic science and engineering careers.

\section*{Hauptman-Woodward Medical Research Institute Research Scientists Computational Structural Biology}

The Hauptman-Woodward Medical Research Institute (HW) is a private, not-for-profit organization studying the structures and functions of macromolecules of biomedical interest. HWI is part of the Buffalo-Niagara Medical Campus, a world-class consortium of research, clinical, and educational institutions located in downtown Buffalo, NY, USA. HWI is growing and has just occupied a new state-of-the art building.

HWI has a strong history in innovative computational methods development. To complement and enhance our current research efforts, we seek to recruit an additional independent computational scientist. We are looking for a structural biologist interested in developing methodology or, alternatively, a researcher who will make use of structural information to study areas that might include determination of protein folding rules, domain interactions, evolution of structure and function and prediction of structure, prediction and analysis of protein-protein and protein-ligand interaction, novel protein design, molecular modeling including pharmaceutical design, biophysical modeling, and bioinformatics-related disciplines.
This new HWI Research Scientist will be hired at the equivalent of the Assistant, Associate, or full Professor level based on his or her qualifications. HWI scientists also serve as faculty within the Department of Structural Biology at the State University of New York at Buffalo.

For detailed information about our current research programs and facilities, visit our web site, http://www.hwi.buffalo.edu. Interested applicants should submit a curriculum vitae and research plan, and they should arrange to have three letters of reference sent to the address below. Review of applications will commence immediately To ensure full consideration, applications must be received by February 1, 2006.
George T. DeTitta, Ph.D., Hauptman-Woodward Medical Research Institute, 700 Ellicott St., Buffalo, NY 14203-1102
Email recruitment Q hwi.buffalo.edu
The Hauplman-Woxjward fristâule is ant Equal Opporturity Enuployer

The Department of Molecular Biology and Microbiology at the Medical School of Tufts University inviies applicanis for a tenure-track laculty position in Virology at the rank of Assistant Professor. Outstandine applicants at more senior ranks will also be considered. The successful candidate is expecied to have, or to develop a productive and ationally funded research program. Applicants with rescarch programs in all areas of humananimal virology and especially in aspects ofmolecular virolagy, emerging viral infections, viral pathogenesis, viral immunology and wiral oncology are encouraged to apply.

The Department is a highly interactive group of virologists and microbiologisis, with research programs in the areas of molecular genetics, microbial pathogenesis, pathogen-host interacion, yeasí genctics, and retroviruses. liaculty members of the Department also paricipale in graduaie programs in Molecular Nicrobiology, Genelics, Biochemistry and Inmunology. Applicants must have a Ph.D or M.D. degree or equivalent and are expected to contribute to the teaching of medical, denial, and graduale sludents. T aboratory space will be in the recently opened Jaharis Family Center for Biomedical and Nuirition Sciences on ihe Boston Health Seiences campus.

Applicants should submit a curriculum vitac, statement of research inierests and fuiure plans, and mames of three references io: Dr. John Coffin, Chair, Virology Search Committee, Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Avenue. Roston, MA 02111. F.lecironic sulmission of applications is preferred (e-mail: lauralyu.smith \(\alpha\) tufts.edu) Review of applicalions will commence upon teceipi and will cominlue until the position is filled.

Tufts Ininersity ix committed to Affrmative Action, Equal Opporiuntiby and the dwersity of its workforce. Intormation is abilable ai http://www.tufts.edu/sackler/.

\section*{Medical College of Georgia Department of Physiology \\ Faculty Positions in Cardiovascular and Renal Physiology}

The Deparinem orPhysiology invites applications for thee kenure-ITak positions. The rank of the appointment (Assistanl ProfessuriAssociate ProfessoriProfessor) will be commenswate with the qualifications and experictee of the sucesssful candidate. A degree in medicine, velerinary medicine or Plh.D. in biological seiences wih postloctoral rescarch experience is required. Sucessful candidates are expected to establish active independent programs of extranmadly funded research to complement research strengths and goals of the department and the medical college. Our department focuses on questions of cellular signaling, newal regulation and homnonal wintol in a broad range of modkl systems of cardiovascular and renal disease. Sucessful candidates will receive sulstantial start-up packages and be housed in newly construstedirenovated facilities. There is a strong insitulional commituent to core facilities, graduate programs and an interdisciplinary appoach. Applicants are also expected to have teaching experience and be committed to teaching students in the schools of modicine, allied heallin scienees and graduate studies.
Applicants should submit a curriculum vitae, a statement of research

Michacl W. Brands, Ph.D.
Seareh Committee Chair
Department of Physiology
1120 Fifteenth Street
Medical College of Georgia
Augusta, Georgia 30912-3000
For full consideration, applications should be received by Deeember 31, 2005.
The whedical Cothege of feorgia is commitfed to diversify in atrorting faculty to fill these posifions and is an A/fomative Action Equal Access Instithtion.

\section*{BCM \\ Buylor College of Medicine}

\section*{TENURED/TENURE TRACK FACULTY POSITIONS IN GENETICS AND GENETIC INSTABILITY Department of Molecular and Human Genetics}

Baylor College of Medicine (BCM) seeks nominations and applications

 position will be filled in the area of genetic/genonic instability (with possible
 eancercenter? and at least one pesition in any asped of fienctics. The department is composed of more than 40 primary faculty members whose research inlerestis include getwornics, mammalian developtnent, the metabolic and genetic basics for inheried humian discease, gene therapy, gerne siructure atodexpressiott. mechuisms of DN A replication and repair, mutation DNA recombination, genelic insilabilily and cancer, cyldgenclics, behavional genetics, bicinformalics, and the biology of aging. Deparlimental researeh includes strengethe in humatn. bacterinl. mouse, yenst, Drosophila and Dictyostelium genetics. The department currendly ranks first, by a wide margin, in number of NJH grantes and fissi in owerall NTH funding in sieneties departments al US medical soheorls. See hitp: //www.imgen.bem.tmc.edu/molgen/.
Sucecssful candidates will have strong basic restarch programs, for ote pesilion in genctiosciemomic insiability, including bud mot limited to TJNA repair, nutation. replication. genome rearrangement. \(\mathrm{DN} A\) damage response,
 genclics includitug mouse senetics or the getnelits of any model organism. A search in human genetics will be posted separately. Generous stat-up support is available.
T.edess of nemination or curricula vilamum should be sent with a brief summary of research plans, and names, addresses. and phone numbers of at least three references (s): Susan M Rasenlerg, Ph.J., Chair of Searel Cammittee, Depariment of Molecular and Human (Tenetics, Baylor Callege of Medicine, M1SC-BCN225, One Baylor Plaza, Houston, TX. 77030-3411; E-mail! smr(ãbem.ime.edu
Bavor College of Mecficine is an Equal Opportuntit): Affirmative Action and Equal Access Emplover:

\section*{Assistant Dean for Science: \\ College of Arts and Sciences}

Responsible for oversighc of the accivities of che Marine and Natural Science building and several col-ege-wide administrative functions, such as overseeing The Assistant Dean facilitates grants, from writing to posc-granc management, and encourages faculcy and faculcy/studene research across the College. Works with faculty and department chairs in the Division of Marine and Natural Sciences on day-to-day procedures and special assignments. Serves on academic committees and offers programming and academi leadership in relation to both majors and che core science requirement. Additional responsibilities include serving as a liaison to ourside agencies PhD in Bialogy, Marine Biology, Chemistry, or Environmental Science, 6-8 years experience as faculcy member with qualificacions equal co che rank of Assiscand/Associace professor: and ac leasc 3 years experience in an administrative position such as department chair are required. Experience in successful grant writing,grant management, and scientific research and sifety procedures is preferred. Candidates should demonscrate iniciarive to proactively identify problems and opportunities and be able co commic to the University mission and objectives Interesced applicants should send cover lecoer and resume to Roper Willians University, One Old Feriy Rd., Bristol, RI 02809 or human_resources@rwu.edu indicating Ref. \# SM05-II3. Roger Willions University is an Equal Opportunityi Americons with Disabilities Act Empioyer

WWW.TWU.edu

The Vatural Resources Defense Council (NRDC), a leading environmental advocacy organization, amounces an opening in its Science fenter, whose mission is to increase the role of technical information and scientific principles in environurental and public healh decision-making.
We currenilly seek a Depuly Directur for the Center in Weshingeon D.C. op provide techrical capacity in one area of scientific expertise manage kelmical resource needs across the organization, interact with the scientificeommunity on policy issues, and supervise a group of rotiting Science Fellows. Candidates must have a Ph.D. or equivalent in a relevant field and 51 years of experience applying technical infonnation to policy decision-making
We offer salary commensurate with experience, an excellent bencfits packige, and at pleasant work environmenn. Please croail resume, writing sample, and letter of interest to: hr_dedarde.org. Or, send materials w Monique Waples, NRDC, 1200 New York Ave, Ste 400, Washington, DC 20005.

To kann more about \(\backslash\) RIX, visit:
www.nrde.org

\title{
VCU
}

Richmond, Virginia

\section*{Dean, School of Engineering}

\section*{irginia Commonwealth University seeks a dean for its school of engineering and invites nominations and expressions of interest.}

Born in Richmond in 1837, Virginia Commonwealth University has grown to become one of the two largest institutions of higher education in Virginia, an urban institution with a clear focus on the life sciences, building on its origins and the strength of its acadernic medical center and the faculty in the rest of the University whose strengths complement it. The student body of over 29,000 includes 18,000 undergraduates. VCU is a Carnegie DoctoraliResearch University - Extensive, attracting over \(\$ 200\) million annually in research funding. Twenty of VCU's graduate and professional programs are ranked by U.S. News and World Report as among the best in the nation, with two ranked first in the country.

The University includes two campuses in Richmond - the Monroe Park Campus and the Medical College of Virginia Campus - as well as a design arts campus in Doha, Qatar, and a second medical campus in NorthernVirginia. The University and the VCU Health System, which includes the MCV Hospitals - ranked in the top 100 U.S. hospitals - have a combined annual budget of \(\$ 1.6\) billion. VCU and the VCU Health System employ more than 15,000 faculty and staff, and the University has more than 120,000 alumni. The University is closely affiliated with the Virginia Biotechnology Research Park, located adjacent to the VCU Medical Center. VCU has been recognized as a national leader for its local and state-wide economic development activities, and for its commitment as a community partner.

The school of engineering was founded nine years ago at the urging of the business community to meet employment needs. Through its foundation, the business community itself built a 548 million building to house the school and the Virginia Microelectronics Research Center. The foundation has received more than \(\$ 60\) million against a \(\$ 74.3\) million campaign goal from the business and industrial community and from alumni. It is now adding two new buildings. The board of the foundation has urged that the school of engineering rank in the top 25 in 25 years: it is clearly prepared to invest to make that happen.
The curriculum of the school is deliberately one of engineering for the future, in particular focusing on biologically- and medically-related engineering and nanotechnology, building on strong linkages with the University's comprehensive academic medical center and the basic sciences. The school's five departments - biomedical engineering, chemical and life science engineering, electrical and computer engineering, mechanical engineering, and computer science - offer undergraduate and graduate degrees; there is a doctorate in biomedical engineering, and a doctorate in engineering with tracks in mechanical, chemical and life science, and computer engineering. At present there are nearly 1,000 undergraduate students in the school, including 250 freshmen, and approximately 200 graduate students. The faculty of 45 are teachers, scholars and active participants in the community: they last year attracted \(\$ 4.4\) million in external funding. At present, the sclwol's budget is \(\$ 9\) million, including \(\$ 7\) million for salaries and \(\$ 1\) million for graduate student support.
Reporting to the Provost and Vice President for Academic Affairs, the new dean will have responsibility for providing vision and leadership in academic, research, and fund development activities for one of the newest and fastest-growing engineering schools in the country. The dean will take the lead in shaping the future of the school, articulating a vision that defines its standard of excellence, the directions of its growth and the new and multi-disciplinary connections that are possible across the University. Significant enrollment growth will require balancing high expectations for student acadernic performance with assuring access for those with potential. Enrollment growth also means growth of the faculty, focusing not only on excellent teachers but also research: extemally funded research will expand significantly. With the faculty, the dean will be responsible for the recruitment and retention of the faculty, extending a high standard of excellence, and new programmatic directions. The dean will also extend the partnerships with the private sector, expanding connections with industry in support of economic development of the Commonwealth.

The dean will be responsible for management of the resources of the school, including its academic programs; its faculty, staff, and students; its facilities, and its budget. The dean will actively support the University's advancement initiatives, leading that effort within the school and among its constituents. The dean will also assure continued focus on the students, providing the services and the support to ensure their success. The dean will be part of the senior leadership of the University, working with other senior officers and deans to realize the University's promising and challenging future.
The search process is currently underway and will continue until the position is filled. Nominations are welcome as are confidential inquiries. Please send a letter of interest and curriculum vitae electronically to Mary Elizabeth Taylor, the WittKieffer consultant supporting this search, at (212) 686-2676 or vcueng'? wittkieffer.com. Virginia Commonwealth University is an affirmative actioniequal opportunity employer, building strength through diversity.

Become a AAAS Science \& Technology Policy Fellow.

What better way to connect your scientific expertise to serve society? Yearlong fellowships offer career-advancing opportunities to work with Congress or a federal agency in one of six thematic areas: Congressional - Diplomacy
- National \& Global Security * Health, Education, \& Human Services - Energy, Environment, \& Natural Resources
- Revelle Global Stewardship.

Stipends begin at \(\$ 64,000\).
Work in Dynamic Washington D.C.
What better place to apply your expertise to the decision-making process that affects people everywhere? You can focus your experience on your interests in national or international issues while you add valuable new perspective to your scientific training.

Join a Network of 1,700 Fellows. Applicants must have a PhD or equivalent doctoral-level degree from any physical, biological, medical, or social science, or any engineering discipline. Individuals with a master's degree in engineering and at least three years of post-degree professional experience also may apply. U.S. citizenship is required and federal employees are not eligible. Since 1973, AAAS Fellows have benefited from a growing and diverse network of colleagues.

Apply for 2006-07 Fellowships by 10 January 2006.
Fellowships are awarded in the spring and begin 1 September with a two-week orientation. To apply, contact AAAS:
Phone 202-326-6700
E-mail fellowships@aaas.org
Website www.fellowships.aaas.org

Eureka! You've found the perfect connection between science and policy.

Vacancies for one Experienced
Rescarcher \& one Early-stage
Researcher European Community
- Marie Curie Excellence Team -

Molecular \& Cellular Biology of Primary Immune Deficiencies -
Host Laboratory: INSERM U563,
Toulouse, France -Starting date: February 2006

Two fellowships funded by the Enropean Community are available to join a new Marie Curic Tixcellente Teata at INSERM T:563. Puprant Tiniversily Hosprital, Toulouse, Trante

The major area of expertise of the Team I.cader (T. TJt.PRE) is the sharacicrization of molecular mechantisms that resulate human \(T\) lymphocyte activation (Immmity 2002,17:157: N. Engl. J. Med. 2004,351:1419; Blood \(2005,105: 4383\)). The objective of the Team is to study the molecular defects of cytotoxic T lymphocytes isolated from patients affected by life-shreatening pritnary itmonnc deficiencies. This. jroject at the imerface between fundamental and clinical research will be instrumental for i.le developmem. of gene therapy aprofoches.

The Team bencfits from a sitifmulatinge enviromment in the fields of T lymphocyte biology and clinical immunology and has established sirons collaborative links.

The Experienced Rescarcher (PhD, 4-10 years poist graduate experiences will be incharge of comducting biochemical experimentis 1.0 iden1.ify prolecins invelved in the resulation of eytortoxic T lymphocyte activation and function. The precise role of seleeted prolecins will be shludied using gene transfer icelanology and live microscopy (already in place). A scientist with expertise in protein chemistry (mass stoctromestry and biominformatiss) will be selested. Experience in molecularfcellolar inumunology will be a plus

The Early-stage Researcher (0-4 y cars prosi graduate experichec with fortivation tor ember a PhD prograni will constuct retroviral vestors encording proterns involved th the resulation of cytotosic T lymphomgle aclivalion and function. The researcher will be in charge of the gene transfer experiments in lymphocytes isolated from patients with deferlivecylolosie funtion. The candidate should have experience in molesular biology and cellular immonology.

PROFIIE OF TIIE CANDIDATES:
Successful candidates will be enthusiastic, highly motivated and haye a strong tropensity lo work in a transuational l.cam.
Fhuency in Fenglish is requived. No nationality restriction applies. Equal opportunity will be given for women and men.
CONTRACTS:
Four-year full-mployment contracts including Living, travel and mobility allowances. Compelitive Salaries.
APPLICATIONS:
Please include CV, statement of interests \& future soals, as well as names of iwo referees. CONTACT \& INFORMATION REQUESTS:
I. TITPRE, E-mail: I.duprewhst it

\section*{Unternehmen Großforschung}

\section*{Grundlagen für morgen}

The GKSS Research Centre in Geesthacht near Hamburg is a member of the Hermann von Helmholtz Association of National Research Centres and has a branch institute in Teltow near Berlin. Its 700 employees cooperate with various universities and industrial firms to conduct research and development work in the areas of coastal research, advanced engineering materials, regenerative medicine, and structure research with neutrons and synchrotron radiation.

In a joint appointment process with the University of Oldenburg, GKSS is seeking to fill the vacant position of Director of the Department of Data Analysis and Data Assimilation in the System Analysis and Modelling section (Prof. von Storch) of the Institute for Coastal Research at GKSS. The position is basced in Gecsthacht.

Associated with the position is a

\section*{Professorship (W2)}
in the Faculty of Mathematics and Natural Sciences at the University of Oldenburg in the ficld of coastal rescarch of the Institute for Chemistry and Biology of the Marine Environment (ICBM), with the obligation to teach subjects relevant to the ICBM for 2 hours per week during term.

One of the key areas of expertise at the GKSS Institute for Coastal Rescarch is the development of methods for environmental monitoring and forecasting. In this field, one of GKSS' main strengths is the observation and modelling of currents and sea conditions. GKSS has been successfully cooperating with the CBM for many years on the obscrvation, modelling and analysis of physical, chemical and ecological processes in tidal flats. In this area, GKSS has a long history of developing and testing operational methods for remote observation and the creation of complex models.

At GKSS, the appointee is expected to contribute his/her expertise to the programme titled "Coastal Change: Long-term Trends and Extreme Events", and in particular to topics related to currents and sea conditions. A special focus here is the development of observation and modelling methods for operational use in coastal waters. The appointee will conduct research that is closely linked to the ICBM programme in Oldenburg as well as to the Marine, Coastal and Polar Rescarch programme in Geesthacht.

Applicants are required to have a university degree in mathematics, physics or another discipline suited to the professorship in question. They should also have carned a doctorate and a postdoctoral degrec or possess comparable academic qualifications.

The University of Oldenburg and GKSS wish to increase the number of female scientists in leadership positions. Female researchers are therefore particularly encouraged to apply. Preference will be given to severely disabled applicants with the appropriate qualifications.

For additional information, pleasc contact Prof. Hans von Storch (storch@gkss.de) or Prof. Jörg-Olaf Wolff (wolff@icbm.de)

The deadline for applications is 23. December 2005. Please submit written applications along with the usual documents (including a description of your scientific career and teaching experience, a list of publications and copies of your three most important publications) to:

Carl-von-Ossietzky Universität Oldenburg
Dekanat Fakultät V
Postfach \(2053^{\text {- }} 26111\) Oldenburg \({ }^{\text {• Germany }}\)

\section*{Inserm}

\section*{ASSISTANT/ASSOCIATE PROFESSOR}

Behavioral Neuropharmacology
The Department of Phamacolesery, [Thiversity of 'lennessce ((\(\because 1\) ') Health Science Conter, inwites applicaticons for a tenure track Assistant/Associate professor position in the area of behavienval mearco pharmacology, Wie scek a faculty momber who will be a major contributor to the T.T Center of Fixeelleme in the Neurntiolog of Thain Tiseases. The faculty member will direct an independent program in an aspect of peychophanmace legery or drug abuse. Tdeal candidates will be those who employ an integrative mechanistic approach, utilizing nourochemical, mo ecular (ar electrophysioneserial techmiques to exompement their behamioral rescarch. Candidates whe mill administer a core amimal behawior laboratore will re ceive additional eonsideration. Candidates should be conthusiastic about engaging in collaborative research within a highly interactive conmmunity of neumo scientists. The selected candidate will participate in the toaching of graduate and professiconal students. Applicants should have a doctorate in phamacology, neuroscience, exporimental psycholegeg or a related discipline, and relewant postdoctoral expericnec. Apphlations will be reviewal begiming Jecember 1, 200 a , but will continue to be acecpted until tho pexition is filled. Corriculterm vitae, statement of esiearch interests, and three reference letters should be sent tol:

Jeffery D. Steketex, Ph.D., Behavioral
Neuropharmacology Search Committee Department of liharmacology,
University of Tenneswe I Iealth Science Center
874 Union Avenue, Memphis, LN 38163 E-mail: jsteketce: (9)

VERTEBRATE PITYSIOLOGIST: Lycoming College. I'he Department of Biclege invites appli cations for a temure-track ASSISTANT PROFESSOR for fall 2006. WFe seek ar Amimal Physiologist with expertise in torrestrial rertebrate studics. 'I cach
 cology, vartchate zoology, a contribution toi curu introductory biokngy secquence, and an upper-leve conrse in the area of expertise. Suecessfirl candidates must have a \(\mathrm{Ph}, \mathrm{D}\). plues a strong commitment () teaching and involving undergraduates in research. Please visit the Delarinent website: http:// www.lycoming, edu/biology/ for more infor mation. Suburit a letter of appolication, curricularm vitac, transcripts, a statement of teaching philoso phe and a statement of researeh interests, and throe phy and a statement of rescarch intorests, and throc
letters of reference by Tecember 75,2005 , to: Dr. letters of refermine by December 6, ,
Michelle Briggs, Chair, Biology Department, Lycoming College, Campus Box 152,700 College Place, Williamsport, PA 17701. Fqual Opime inatio: Limplager.

L'he Laterdisciplinary Department of 'Iextile Engi necring, Chomistry and Science at North Carolina State ITriversity invites applications fir TENURFLRACK POSILIONS in the areas of ili fibcr, polymin or materials conginecring, and (2) the arcas of modeling, simulation, and quality systems design. L'he positions at' at the Assistant Professor level, but aperopriate candidates may qualify for a mamed professorship. For a complete desiciption of the vacant positions ploasc scc website: hattp://Hww, tx nest.colu/departments/tecs/positions. Review of applications begins Nowembor 30,2005 , and oom tinutes until the positions are filled. Afimmenies

licenci State, Department of Biclengy, is scarching for two ASSISTANT PROFESSOR POSITIONS lior fill comsideration, all materials must be recerifed by January 20, 2006.
(]) Cell Biologist, tenure-track. The suceessfirl applicant's expertise will be in signal transtuction, cell eycle, ancer cell bicilegy, dewolopmental ar stem cell biolecey, cellatar incotility, or membrane biology. The successnal applicant is expected to establish an ex termally funded research preseran inwolving Master's and underseraduate students and to teach courses in our core and in his/her area of spocialization. A Ph.D. in cell biolegry a a closely related field is requircd. P'ostdoctoral experionce proferred. Send a etter of application ícover letter, online application orm, elumiculinn vitae, statement of research interosts and taaching philosophy, and thece letters of reforencel, and confidential papers to: Dr. Alcjandro Calderón-Utrea, Department of Biology, California State University, Fresno, 2555 E. San Ramon Avenue M/S SB73, Fresto CA 93740 , or cı e mail: calaleatecsufresno.edu. Lelephone: \(5 \overline{5} 9\) 2784080 . Fax: 5592783963.
(2) Vertebrate Physiongist/人 eumbionogist, temuretrack. 'l'he sucecsstid applicant's cxpertisc will be in amy area of neuroscience, and will be expected to teach a course in meurophysiondegy, and a geraduate comosc in their arcas of specialtw. The suceessfinl can didate must develop a restarch program that involves undergraduatc and Mastor's level students, and pur suc the external fiunding necossary to maintaining a successful research effort. An emoned dectorate (P h. T). in biologe, zacileng, physiology or neurabialogy is requirad for apposintment to a tenure-tack position Postdoctoral experience preficeal. Send a letter of ap plication écowr letter, online application form, curric ulinn vitae, statement of sesuarch interest and teachingr thilesouphy, and the letters of reformee), and eno idential papers to: Dr. Brian lisuleimura (e mail: SrianT(a)CSUFresno.ode), Department of Biology M/S SB73, California State University, Fresno, 2555 E. San Ramon Avenue M/S SB73, Fresno, CA 93740. Telephone: 559-278-4244. Fax: 5592783963.
 wio Limployte.

\section*{ASSISTANT/ASSOCIATE PROFESSOR \\ Neuroscience, Department of Physiology College of Medicine}

We invite applacations for a tenure-track position at the level off Assistant or Associate Professor. Candi dates must have a Th.D. or M.D. and peostdoctoral experience. He or she must have dememstrated ox cellence in lescarch in regulatory and integratire physiolesty with paticular emphasis on neural systems or plasticite . l'he successinal applicant will be cxpected tol join the Neural Systems and Masticity Research Geroup and to develop a stong extermally fiunded rescarch program. A compctitive startup pack age is available. The sutccessfirl candidate will be encouraged to suthmit an application to the Canadian ligundation of lonowation iClij. She or he will contribute \(t\) o the teaching of undergraduate students. within the propersed Sehoal of Hiomedical Scieners and to the superwision of graduate stadents.
Pleatie stind curriculun vitar and the names of three reforences by lanuary 15, 2006, to:

Dr. Wolfgang Walz Head of Physiology College of Medicine

\section*{University of Saskatchowan 107 Wiggins Road}

\section*{askatoon SK S7N 5ES Canada}

E-mail: walmomask.usask.ca Fax: 3069666532
The T ravervity of Sitkerchewara is committed to FimployHeni Livaije, hrembers of itssignaisd groxys iaromen. Ahariqinal pesple, poople with distuibites, wat pisible

\section*{THE STATE UNIVERSITY OF NEW JERSEY \\ RUTGERS}

\section*{Professor and Chair of Nutritional Sciences}
 prominence. To make a significant impact on human health, Rutgers has targeted nutrition and its health consequences as a principal area for programmatic grow h. The sucesssful candidate will take a leadership role through the recruitment of new faedily, the development of major new facilities, and the fostcring of mulidisciplinary rescarch and traming prograns. Nutitional Scienees is located at Cook College, Rulgers' school of food and cavironmental sciences and site of its 1 and Grant mission and activities, and there are ongoing collalorations with other Cook departments including Animal Sciences, Plant Biology and Pathology, Fool Science, and Biotechnology. Nuritional Scicnces is also part of a vibrant life scicmees rescarch communily at Rutgers Lniversity, including major programs in structural biology, molecular, cellular and developmental biology, neuroscicnce, dee Sicm Cell Inslitute of New Iersey, the Cancer]nstitute of New Jemsey, the Center for Advanced [Biotechnology and Medicine, the Center of Alcohol Studies, the]invirommental and
 campus is localed in conleal Xew Jetsey, close to Sew York City, Pliladelphich beaches, and counlryside
The Nutritional Sciences Department has 17 full-time faculty members inwolved in widergraduate, graduate, and outreach programs. The faculty's rescarch arcas include lipid metabolisin, calcium and bone developmont, concry expenditure and obesily, amine acid melabolism, child nutrition, community nutrition, and health promotion (http://nutrition.rutgers.cdu/). The successfil candidate will strengthen and extend the department's research areas in healh and clinical fickls involving the eliology, prevention, and tradment of mutrioun-related discases, ineluding obesily, diabeles, CVD, cancer
 and oversee faculty mentoring.

Qualifieations: The suceessful candidate must have a Ph.D. andior M.D. or their cquivalent and arecord of distinguished rescarelh and scientific leatership. The sucessful candidate should have strong interpersonal skills and a sustained record of peer-reviewed publications and researel finding. The suecessful candidate will be provided with a highly competitive salary, significant start-up support and laboratory space, and sulstantial administrative support. This is at anure lawk position.
Inquiries and nominations should go to Dr. Miehacl A. Gallo, Professor, Einvironmental and Ocenpational Medicine, Rohert Wood .fohnson Medical School, 170 Frelinghuysen Rd., Piscataway, NJ, 08854 (magallo(aeohsi.rugers.edu).

A letter of application, curriculum vitae, names of fow or more protessional references, and a statement of researeh and leadership objectives should be sent by clectronic or regular mail to Ms. Phyllis Lepucki. Rm 004, Martin Hall, 88 Lipman Drive, Cook College, Rutgers, The State Leniversity of New Jersey, New Brunswick, NJ 08901 (lepuckiáaesop.rutgers.edu). A revicw of applications will begin on February 15, 2006 and continuc unlil a suitable candidate is identified. Starting date is negotialle, on or after July \(1,2006\).

Rutgers Thiversity is an Eftal Opportunith/Affomative Action Employer:

\section*{Assistant or Associate Professor of Neurobiology}

\section*{Developmental Neurobiology Program \\ Institute of Molecular Medicine and Genetics Medical College of Georgia}

The Medical College of Georgia (MCG) invites applications for tenure-track Assistant or Associate Professor positions in the Prograrn in Developromal Neurobiology, Institute of Molecular Medicine and (ienetics. Candidates should have Phy) or MD, posiductoral experience, and potential to develop or maintain a strong extramurally funded rescarch program in developrential or regencrative neurobiology. The MCG is a growing state supported academic medical centes located in a historic cily with outstinding recreational and lifestylo opportunities.

Interested applicants should submil a CV, a statement of research interests, and future plans, and should arrange for 3 letkes of reference to: Dr. I.in Mci, C/O Kathleen Murphree (knurphrec(àmeg.edu). Applications will be received until the position is filled Please reference ACII\#'s 49384 andior 49385 when applying (PO (4) 10 (1) 0675872)

W/V/H/D - \(\mathrm{EEO} / \mathrm{A} A\)

\section*{표 In mimimil \\ MULTIPLE FACULTY POSITIONS UNIVERSITY OF CALIFORNIA, RIVERSIDE BOURNS COLLEGE OF ENGINEERING}

The Bourns Collene of Engineering at the University of California, Riverside invites applications for tenure-track or tenured faculty positions at the Assistant, Associate, or Professor Rank. The College is secking highly qualified faculty members in the areas of Bioengineering, Chemical Fagineering. Computer Finginecring, Computer Science, Flectrical Enginecring, Finvironmental Eanginecring, Material Science and Enginecring, and Mechanical Enginecring. Specific areas of interest are provided at wwwengr.uer.eduifacultysearchi. People with vigorous rescarch programs and demonstrated graduate student productivity are strongly encouraged to apply for the semior rank. Applicants should have a doctural degree in the relevant engineening discipline or a related field; those with it bachelor's degree in engineering are prefened. Salary level will be compelilive and commensurate with qualifications and experience.
We anicipate that the suceessful applicant will complement the highly molivated and entrepreneuriad spirit of the College faculty. connibuting meaningfully to the success of future leaching, research. and service ascomplismments. Faculy research activilies ate essentiat to the suecess of our progran and as such new members are expeeted to iniliate and sustain strong sponsored research and graduate training programs.
The Bouns College of Engineering is proud of ils faculy's aceomplishments and rapid growh. Over the past five years. the numbers of fivenly and undergraduates have nearly doubled; graduale student enrollment has increased six-fold, and research expenditures have more than tripled. The College currenlly has 70 faculty members. 1400 undergraduates, more than 300 graduate students, and more than \(\$ 30\) million in anmual rescarch expenditures. The Collese is home to five interdisciplinary and multidisciplinary rescareh eenters: The Center for Environmental Research and Technology (CLE-CT:RT), the Center for Researeh in Intelligent Systems (C'RIS), the Center for Nanoseale Science and Fangineering (CNSF: , the Center for Bioengineering, and the Network Fembedded Computing Systems Institute (NT:C.SI).
The College recently opened its Faginecring It building as well as the Bourns ITall Clean Room facility (part of C'NSI:), and is cxpecting the opening of two additional buildings. Material Science and Enginecring, and Fangineering IIt in 2008 and 201 I , respectively.
The search committee will begin reviewing applications on January 1, 2006, and will contimue to receive applications until the positions are filled. To apply please register through the whblink at www.engr.ucr.edu/facultyseareh/and submit the requested PDT or Word tiles (cover letter, curriculum vitac, statements of research and teaching interests, and reference contact information). Tor inquiries and questions. please conlacl us at facultysearch (acngr.ucredu.

\section*{ASSOCIATE PROFESSOR / PROFESSOR \\ Cardiovascular Rescarch}

We are secking an established investigator with out standing research accomplishonents to complement and extend the cardiovascular rescarch strengths in our Department and our Thstitution. Medical (o) legere of Geomgia has a strong cardiowassular research community with specific interests in nitric aride, oxidative stress, eicosamonds, signal transduction, hypertension, endothelial dysfunction, angiogenesis, adhesion proteins, ion channels, myecardial discasc, diabretes, and develomment of physical cardiowawialar risk factors. We scok applicants with a strong record of productivity and an cxtramurally funded rescarch Proseram, Farticularly a a Pregram involved in control cf wascular growth and cardicwascular dysfunctions Thysician sisentists are encourageal to apply. Whe offer a gencrons startup package and cutstanding core facilitics are awalable for microarray tcelnolegy, genetically modified aninals, cell imaginge, electron microscopy, primate rescarch, and clinical collabo rations. The snecessfinl applicant for this porsition will alsos participate in teaching programs for professional and graduate students. Measc send curriculum vitac, sumbuary of professional and research groals, and the nalues ard addresses of three references to: \(\mathbf{R}\). William Caldwell, Ph.D., Department of Phar macology and Toxicology, Medical College of Georgia, Augusta, GA 309122300 . E mail: waldwelemail.meg.edu and wisit the Department homeprage website: http//www.meg.edu/SOM/ plantox/index.htmal. Application revicer will begin Nowember 2005. MCe; is wh Figul Employment

\section*{PLANT' ECOLOGIST'}

The W.K. Kelloges Biological Station (KBSj (website: http://www.kbs.msu.edu) of Michigan State [Tniversity MSTV] seeks applicants for a tenuretrack Assistant Professorship in plart ecollegy. We sock an intcractive collcague in any arca of plant ecoldery who will take advantage of the field and rescarch facilitics at KBS. Responsibilitics will in clude development of an externally funded research prosram, teaching at KBS and on the main MST: campus in tast Lansing, and participation in the graduate pregram in Eacolesy, Fexolutionary Pion ergy, and Behavior at MST (websites hatp://www. msuredu/~eebb). 'The successfid candidatc will be resident at KBS and have a joint appointment in the Department of Plant Biologe (website hattp:// www. plantbiology.msu.edut on the MSL: campus.
Applicants should send curriculum witate and statemonts of rescarch and teaching interests, and arrange to have three letters of recommendation sent to: Jefficy Conter, Chair, Plant Ecologgist Search Committee, W.K. Kellogg Biological Station, Michigan State Utiversity, Itickory Corncts, MI 49060. Address questions to e-mail: connerje msu,edu. Revicw of applications will begin on 7 DC acmber 2005 , and will continue until a suitable candidate is identified.

POSTDOCTORAL POSITION: Positics awailable to study the pathophysiclogy of the septo hippocanpal systenn. The laboratery work is focursed in understanding septal neuronal networks and their role in aboromal cxcitability states including Alfheimer's disease. The prsition requires expertise in clectrophysicilegy. Skills in immunchistochomis try, tissue culture arnd modecular biolongy are desirable. Piease send curciculun vitate, sumpinary of research interests and thece letters of reftrence to: Luis \(V\). Colom (e-mail: luis.colomemth.edu), Department of Biological Sciences, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520 .

The Department of Vision Sciences and the Center for the Development of Functional Imaging at The University of Alabama at Birmingham (UAB) invite applications for a tenure-earning Faculty Position. Candidates with expertise in innaging (firnctional magnctic resconance imaging or optical in experi mental animals on humans atc particularly concour aged to apply. TAAB is one of Americals prenvier rescarch univirsitics, ranting among the top 20 in fiunding from the National Institutes of Health Vision research is expecially strong at TVAB with \(\overline{5} 2\) faculty from eleven departments constituting the Fision Science Research Center, one of ten universitywide senters. The suceessful candidate will have aceess to MR1 facilitics which indude two \(z^{\prime} 1 l^{\prime}\) human to MIL facilitics which indude two 31 human
systems, a 9.4 T small animal system, and a vertical 4.7 ' I' system dedicated to non human primate re scarch. He /she will alsc have acecss to folly staffed wre resources which indude electronics, compater machine shop, histology, molectlar biology, trans srenic, hybridesma, confical micteswory, fluorescerice resonance energy transfer (FRFT), and multiphoten imaging. Vision Sciencos faculty actively participate in mary graduate programis including vision science, cellular and molectuar biology, nentorscience, and biomodical cngincoring. For Assistant level appoint ment, candidates are expectal to have doctoral and postdoctoral training, and to devclop a mationally recognized and extramurally funded independent research procram. Associate or Full Professor appointment will require demonstrated independence and research productivity, includinge a strong track record of cyternal fiunding and pecr reviewed pub lications. Applications should be reccived by January 37, 2006, to ensure full consideration. Applicants should scond curriculum vitac including at least three references, and a statement of research interests to:

\section*{Dr. Paul Gamlin}

Chair, Department of Vision Sciences The Univetsity of Alabama at Birmingham 924 South 18 th Street Birmingham AL 35294 E-mail: Pgamlinereab,edu.

\section*{IOWA STATE UNIVERSITY}

Department of Physics and Astronomy Physics of Biological Systems
Applications are invited for a tenure track FAC ULTY pesition to bergin Auspust 2006. We seek camdidates with the strengest credentials and promisc of future accomplishment in a forcfront arca of the physics of hiodescrical systenns. The successfirl applicant will be expected to interact with rescarchors within the department as well as researchers in other disejphines. Potential apporoches indude single motcende studies, spectroscopy, diffiaction mothods and thenerical bionegical physics. Candidates at the assistant profeswor level are expected to have a Ph.D. in physics of a closely related discipline and a dem onstratal record of resiearch accomphishmente mormadly achicyed through postdoctoral experience. All candidates should demonstrate promise for excel lence in teaching at both the undergraduate and graduate levels. liurther information about the Physics and Astronomy Departnent and the life sciencos program at ISU are on the wob at websites: http://Www physics.iastate.edu and http:// www.bioinformatics.iastate.colu/.
Applicants should send a letter of application, a resume including a statement of rescarch and teach inge interestr, along with manex, and contact information for at least thece references. Mease arrange for these letters of recorminerdation to be sent tos: Physics of Biological Systems Scarch Committec, c/o Ms. Gloria Oberender, Department of Phys ics and Astronomy, Iowa State Utriversity, Ames, Iowa, 500113160 . E mail applications will not bo considered. Applications mill be acoepted wntil De cember \([5,2005\), or until the position is filled. Towa

ASSOCIATE/FULL PROFESSOR POSITION Tissue Engineering
The University of Texas, Arlington
'He Biocnginecring Department at l'he Universi ty of 'lecars, Arlington (C-'L'A) invitos applications for a semior level tenure iAssociate or Full Professor) faculty pesition, with the starting employment date of fall 2006. Applicants must have a Ph.D. in bixemgineering or a closely relatal field and a power track of teaching, schelarly rescarch, and external firndirg in tissue engineering or related areas such as biomaterials and biomechanics with tissue engrinering focus. The Bicenginecring Department has a joint M.S. and Th.D. Progran with The ITniversity of 'Icxas Sontharstern Midical Conter at Dallas, of 1cxas southrostcrin Modical Conter at Dallas. laboration with clinicians and life scientists. The successful candidate is ceppected to cstablish a rig orous, extermally fundeal research program, teach craduate and undergradiate courses, and forfom university service. U'I'A is idcally situated betweon the Dallas and Fort Whorth metropolitan areas with less than 18 miles distance to both citics and excellent aceess to a large number of medical eenters. high tech compranies and cultural events. To, apply, pleasc visit cuu website: https://cse2.uta.edu/be/ te/ and upload your cower letter, curriculum kitac. itatement of career goals, and names of at least thres references. Revicw of applications will begin imme referchecs. Revicw of applicaticins will begin inme
diately and contimue until the position in filled. \(\mathrm{T} T \mathrm{~T}, \mathrm{l}\)

\section*{VISIIING FELLOW IN SCIENCE,} TECITNOLOGY, AND
ENVIR ONMFNTAL POLICY

\section*{Woodrow Wilson Schoo}

Princeton University
'the Program in Science, 'lechonolegy, and Envi rominental Policy (STEP') at the Woodrow Wilsorn Schood of Public and Tnternational Affairs, Princeton University, invites curtstanding faculte, independent scholars, and practitioners to apply for an appointmont as a fellow for the academic yrar 20062007. l'he sucecssfiel candidate will devote an academic year in residence at Princeton to research, disisussions, and scholarly collaboration on topics related to enviromomental policy and science. Tinder exceptional circumstances, applications for only one semester in residence may be considered. All applieants should have a doctorate or a professional postgraduate degree and at least several yoars of subsequent cxpericace.
Full details regarding the fellowship and the application procicss can be forund at website: http:// www.wws.princeton.edu/step/employmentframe. html. The deadline for applications is December 22, 2005.

For more information about applying to Princeton please link to website: hatp://web.princeton. edu/sites/dof/ApplicantsLnfo. htm.
 Aizom: Limployer.

POSTDOCTORAL POSITIONS arc available to examine the role of Mdm2 and Mdna in regulation of the p53 tumor suppressor during devel opment, coll differentiation, and oncogencsis using cell culture and monuse models. Tn addition, surcessfiul candidates will have the opportumity to, train in all aspects of mouse modeling. Experience in molecular biokesy is required.
Scnd curiculum vitac and contact information for three references to: Stephen Jones, Ph.D., Department of Cell Biology, UMass Medical School, 55 Lake Avenue North, Worcester, MA 01655. E-mail: stephen.jones@umassmod.cole. Visit website: http:// www.umassmed.edu/cellbio/faculty/ jones.cfin.

\title{
Science \\ MIAAAS
}

\section*{Genetics Editor at Science}

Join the dynamic tean at Sciente as a full-tinn assocjate cditor for the biologieal seiences in our Washington, \(1 D\), ISA or Cambridge, UK ollice. We are looking for a life scientist with broad interests, a lively curiosity, and expericnce in cutting-edge research in several of the tollowing fields: genetics, genomics, evolution, evo-devo, and ccology. Responsibilitics inelude managing the revicw, selection, and editing of manuseripts, soliciting reviews and special issues, and fostering comacts and communication with the seientific community. liditors are expected to 1ravel to scientific meetings. A Ph.D., posidoctoral experience, and multiple publications are required. Previous editorial experience is not necessary
For consideration, send a resume and cover Ietter; along with salary requirements, to:

\section*{MAS \\ Human Resources Department, Suite \#101 1200 Now York Avenue Washington, DC 20005}

Applications can also be sent by e-mail to hrtempodasas.org or Fax to 202-682-1630.

Visil us al: www.aads.ory.
Nonsmoking work enviromment. NOE:

\section*{Boston University Bioinformatics Graduate Program Faculty Position}

The Bioinfomndies Progran at Boston Universily invites applicalions fiom extremely eneryetic and promising texcher-scienisls for at tentre-rrack assistant or associale professurship. A senior position is also possible for an emusually atceomplished researcher widh an inlemational reputation for pioneering conaributions to bioinfonnatics and computational biology.
The Bioinformitics Program, centered at the newly inaugurated inlerdisciplinary ife Sciences and Enginecring Building in the heart of Boston, is University wide and includes some 50 faculty from the Colleges of Tinginecring, Arts and Scienees, and various components of the Medical campus, as well as adjunct faculty from major biotechnology companies, the Broad Institute, FTarvard Medical School, and the National Center for Biotechnology Jnformation. Students are drawn from diverse disciplines, and selection is extremely eompetitive. More than 70 PhD students are elurently pursuing leading edge rescarch in areas ranging from whole-genome analysis, structural genomics, and cell systems biology, to clinical applications (http://hioinformatics.hu.edu)
C'andidates should have concrete plans for establishing a computational rescarch program in one of the following areas: evolutionary hiology population genelics, sysiems biology, proteonics. or comparative genomics. Exceptionally strong eandidates in oulher areas migh also be considered. Candidates must have a strong biological and computational background, with primary raining in eilher mathematical statislics, chemisury. physics, computer science or a life science. Review of applieations will begin on December 7, 2005 and will conlinue until the position is filled. Please apply on line al http://cagt.bu.edu/page/Pusition 1_apply. You may also send at resume. 2 page research plin, complele bibliogiaphy and al least three lellers of recommendation to:

Chair, Bioinformatics Search Committee
c/a Caroline Lyman
Bioinformatics Program
Boston Cniversity
44 Cummington Stree
Boston, NA 02215

\section*{UNIVERSITY OF KANSAS}

\section*{Microbial Ecologist}

The Department of Ecology and Evolutionary Biology and the Department of Molecular Biosciences at the University of Kansas invite applications for a tenure-track position in Microbial Ecology at the Assistant Professor level with an expected starting date of 18 August 2006 . We encourage applications from outstanding candidates to establish a high-quality, extramurally funded research program using molecular, isotopic, and/or biochemical approaches to address fundamental questions of cenlngieally relevatt microbial processes (such as those neeurring it soil, aquatic, binfilm, or other environments). Required qualifications include a Ph.D. and postdoctoral research experience it mierobial cenlngy or a related field, the ability to teach courses telated to mierobial ecology at the undergraduate and graduate levels, and an interest in collaborative research with members of both departinents at KU. Eligibility to work in the U.S. prior to the starting date of the position. Preferred qualifications include experience and interest in applying modern teeliniques to study microbial environments, demonstrated ability to obtain extemal funding, and ability to contribute to the teaching of eourses in cither or both departments, especially courses in the getreral areas of microbiology and/or ecology and a candidate who will contribute to the elimate of diversity in the College, ineluditg a diversity of seholarly approaches.

\section*{Faculty Position in Evolutionary Genomics}

The Departments of Molecular Biosciences and Ecology and Fivolutionary Biology at the University of Kansas are seeking applications for a temure-track faculty position at the ASSISTANT PROFESSOR level. Exceptional candidates at the rank of \(\triangle\) SSOCIATE PROFESSOR will also be given serious consideration. Research interests of the candidates should be in the area of EVOLUTIONARY GENOMIC'S. Preferred candidates will have a research program that utilizes computational and experimental methods and that complements existing research strengths in both departments and a candidate who will contribute to the elimate of diversity in the College, includitg a diversity of scholarly approaches. Required qualifications for Assistant Professor inelude a Ph. D and postdoctoral experience itn evolutionary genomies or a related field of study by the time of appointment, demonstrated excellence in research, and a commiment to quality undergraduate and graduate education. Additional required qualifications for Associate Professor include a vigorous, well-tunded research program in evolutionaty genmmies and demonstrated exeelletre in teaching. The successtul candidate should be eligible to work in the U.S. prior to the starting date of the position.

Applicants should submit a cover letter, curriculum vitae, key reprints, and statements of researeh and teaching itterests ith a single PDF file to MicroEcola ku.edu or to evogensearchokitudu, or by mail to Dorothy Johanning, Division of Biological Sciences, 1201 Sunnyside Ave., Rm 2041, University of Kansas, Lawrence, KS 66045-7534. Applicants should also arrange to have at least three letters of referenee sent to the above address. Review of applicants will start 9 Deeember 2005 and continue until the positions are filled. The expected start date of the positions is 18 August 206. For more infonmation about the positions and the Departments, visit our websites at http://www.molecularbioscienc es.ku.edu and http://www.ku.edu/~eel)

Paid for by KU. The University of Kansas is an EO/AA Etnjleger.

\section*{PIONEER.}

\section*{RESEARCH SCIENTIST}

Pioneer ITi-Bred Triternational, Triconporated is the world leader in the discovery, development and delivery of clite crop genctics. We are looking fer a Research Scientist at corr Johnstom, Towa leceation to provide technical and scientitic expertise supporting crop protection gene expression studies in firneri and plants. Ph.T) in biolegical sijences and a minimun of seren years of rescarch expericnec (poist Mh.D.) or Equivalent combination of education and experience. Fixtensive persomal experience in the quantitative analysis of genc expressicnn. Direct experience with analysis of RNA using quantitative methodologries including miercoarrays and real time PCR is required Excellont writton and spoken communication skills and exferience with manipulation of large data sets ate required. I'he ability to contribute at the tochnieal, scientific and managrement levels is requiral.
Requiral identification fors this pexition is TP 460 . For a complete job description and tce apply, go to website: http://www.pionecr.com/employment. Lqual Copanisniay Limployeq.

\section*{POSTDOCTORAL FELLOW}

Pathology and Iaboratory Modicinc

\section*{Emory University School of Medicine}

Poxtdoctoral positions are available at Thorry ITniFersity focusing on innate immunity, cpithelial cell biolegy ard the pathophysidesgy of epithelial inflarmuation. Opposturnities exist for involvenent in cxciting projects aimed at understanding how len kocytes interact with epithelial cells with special enphasis on cell-cell adhesion/integrims, signaling transmigration and cpithelial barricr fiuction. 'the role of junctional adhesion molecules and sigroal regulatory proteins in the above processes are ac tively being studied. Adectoral degrec, expericnec in nolectlar/cell biolegy and protein biochemistry of cukaryotic systems, and strong English commmica fion skills are required. Preference will be griven to individuals with previcuts cxperience in the fields of innate immmnity and/or biology of cpithelial cells. The surcessifil applicant will josin our epithelial pathobiology group compriscd of six principal in vestigators with commen interests that ocenpy \(12,500 \mathrm{square}\) feet of new, filly equipped and interconnected rescarch space. Luterested individuals should send resume to: Dr. Charles Parkos, Emory University, Whitehead Biomedical Research Building, Room 105B, 615 Michael Street At lanta GA 30322. E-mail: cparkos@cmory.colu.

\section*{IMMUNOLOGIST, TENURE TRACK}
'the Deparment of Collnaar Biology at the Uni versity of Georyia invites applicants for a tenure-track Assistant Professor porsiticin in the arca of immunol ory. This pesition is part of a major expansion of programis in biomedical sciences, in comjunction with the opening of the Paud 1). Cowerdell Center for Tnterdisciplinary Pionedical Studies. Sutcesssfirl candidates will be expected to develor a strones extramurally \(y\) funded rescarch program and to contributo Fo) instruction in immunolesy. Individuals whose rescarch intercsts complement oure institutional and departmental foci in infections discases, developmen tal biology or cell biology are of particular interest. Potential applicants can loarn more about the Froserams in this highly collaborative enviromment and find details about the application process at website: http://immmnology.cl.uga.edu. Appli cations received by January \(\mathbf{5 5}, 2006\), are assured of full consideration. The Prumblisi Coltege of Aris anit
 fiantry and stomady enconirges ryphistions form thembers of

\section*{POSITIONS OPEN}

\section*{THE UNIVERSITY OF TEXAS}

Southwestern Medical Center
ASSISTANT/ASSOCIATE PROFESSOR POSITION: The Department of Physiology invites scientists with a track record of technical and intellectual innovation to apply for a tenure-track Assistant or Associate Professor position. M.D., Ph.D., or aguivalent degree is roguired. 'Ihis position is targeted to individuals whe can bring new technol (ugies to fristion to answer important physiolesgical or systems biological questicuns. Optical, micchanical clectrical, molectuar biological, or computational methods are all appropriate with important applications expected at one or more levels of physielegy rancings firom individual genes and proteins to cells: and organs.

L'his position represents a new growth phase of this Defartument at one of the world's leading medical science centers. 'Ihe persition will be supported by significant laboratory space con our now campus, a competitive salary and an exceptional stantup package. University of lewas (C.l') Southwestern is the cicientific home of four Nobel Prize laureates and 15 members of the Vational Acaderny of Sciences. More than 2,000 rescarch projects are supported by \(\$ 300\) million grant furnding ammally at our school.
Applicants should subnit clectronically a curric unlum vitac and bricf statement of rescarch plans to c-mail: donald hilgemann searchemberthwestern. edu and should arrange to have threc confidential letters of ieference formaded to the same address.

 tive Aitioni Fqual Oyportuaity Empleper

\section*{FACULTTY POSITION IN VIROLOGY University of Hawail}

The Department of Miscobtiology at the TTniversity of Hawi'i at Manca invites applications for a tenure track, nine month faculty position in wirol ogy at the Assistant or Associate P'rofessor level. The cxpected start date is August 1, 2006. 'He Depart ment seeks an individual using modern molecular approaches in the area of animal virology. Candidates must hafe a Ph.D. in the biciogical scicnecs, frstdextoral restarch experience, a retord of pubDications and a acominitment to teaching. A minimum of four years full time tadehing experience at the Assistant Professor level is required for application at the Associate level. 'He successind candidate will bo expected to develop an independent, externally firndal researich progran, to teach at the undergraduate and gradiuate levols, and to mentor students. Salary will be commensurate with experience and rank. Competitive startup package to be offered. Applicants sheruld send curriculum vitac, statements of teaching philosophy and research interests, and the names and contact information of thece roffer nnces to: Virologist Search Chair, Department of Microbiology, University of I Iawai' 1,207 Snyder Hall, 2538 McCarthy Mall, Honohulu, HI 96822. Inquriries should be directed to: Dr. San Callaban at c-mail: scallahamowaii.colu. Applications reecived after January 1, 2006, may not reccive fiul consideration. The t.miverity of Havith is an Fighial

\section*{ASSISLANT PROFESSOR POSTIION \\ ASSOCIATE RESEARCIT SCIENTIST \\ Division of Hematology/Oncology} Maimonides Medical Center, Brooldyn, NY

Mount Sinai School of Medicine
We are scoking an Associate Rescarch Scicntist to contimue the ongering research of melofiberesis. Appheant must have a Ti.S. Ph.D. degree and expertise in molectular biclogy. Salary ranges from \(\$ 45,000\) to \(4 . \overline{5}, 000\) armually phes finge benefits commensurate with experience. Siend your curriculum vitac dircotly to: Jen C. Wang, M.D., Maimonides Modical Center Brooklyn, New York, Division of Hematology/Oncology; e mail: jcwangsteaol. com; fax: 718-635-7110.

ASSISTANT OR ASSOCIATE PROFESSOR The Barnett Institute of
'He Biarnett Institutc of Chomical and Biolegical Analysis announces two new positions at the As sistant or Associate Professor level. These appoint monts are part of a \(\$ 75\) millionn investment plan launched by Northeastern ETniversity, and will be held jeinally hetween the Barnett Tnstitute and the Department of Chemistry and Chemical Biology. Joint apperintments with other deparnments in the Colleges of Arts and Sciences, Engincering, on Pharmacoutical Sciences mill alsc be considered
The Institute, which recently celebrated its thirticth anniversary as a pioncer in the application of emerginer bicanalytical approaches to address contemporary biological and clinical challenges. scoks coutstanding candidates whe can complement its current research proserams in protensics, mitabolomics and asseciated technolegics for systems biology (website: http://www.barnett.neu.edul) Major collaborations are ongoing with nearby modical schociols as mall as bictechnology and phar maceutical ecomparimes, and the institute has ant active technology licersing program. Relevant fields of researeh could include carbohydrate chemistry, namotechnolegy, clinical diagnostics or hioenginecring: other atcas may alse be of interest. Assistant Professor candidates (tenure track) should have at least two years of pestdextoral experience. Associate Professor candidates (tcmured) should have a dcm (nnstrated level of acomplishment, including an active, falerally funded research progran. Please sond a letter of application and a comprehensive curriculun vitak fo: Dr. Roger Kautz; Barnett Institutc, Room 341 Mugar Building; Northeastern University, 360 Huntington Avenue; Boston, MA 02115. Or by e-mail: bathettinstereutedu.

 wheran and mimnotizes.

\section*{Leonard M. Miller School of Medicine University of Miami}

Department of Dermatology and Cutancous Surgery
'Ihe Leomard M. Miller Scheol of Medicine. UTiversity of Miani, Dequattment of Thermatolery and Cutancouts Surgery is sceking a full time fac ulty member at the RESEARCH ASSISTANT PROFESSOR / RESEARCII ASSOCIATE PROFESSOR / RESEARCH PROFESSOR level. Candidates must have M.T., Ph.T., or M.D./ Mh.1). We are scoking individuals with rescarch in tcrests in dermatology, inflammatory infictions, go netic diseases, and/or wound healing expretise desirable. Ower 1,000 sounate foet of wet laboratory space. Staff, Mh.D., and fillow support to be nego tiated. Texternal grant sutpport is desirable. In ad dition, clinical responsibilitics for M.D. or M.D.; Ph.J. applicants to include seeing private patients at current clinical practice for general dermatology Rank and salary will be commensurate with training and experience. Please forward curriculum vitae to Lawrence A. Schachmer, M.D., Chairman \& Harvey Blank Professor, P.O. Box 016250, Miami, FL 33101. E-mail: lschachn@med.miamicedu. Telephone: 3052434771 . Fax: 3052436191 . An

\section*{POSTDOCTORAL FELLLOWSIIIP}

Texas ASM Tniversity at Galveston (TAMOTG) sccks applications for two compctitive two wcal Postdecteral Fellowships from highly qualified candidates interested in any aspect of marine biology. occanography, coastal/ocean cnginctring, marinc reoles or, or marine policy and management. For de tails, sec website: http://www.tamug.edu/postdoc.

The Sauta Fe Iusrinure (SHiI) has an openins

 Dosig. Although che position is focuscd on 111 V

 indexRescarch.plap). Ihe succossful candidaw will be firec
 while : it athe Itwhitule.
The speriiit: 1.tojeca will !nvolve
HIV evolncisn and deleming thataclerisles bi the vitus ar cransmission;
Dcsign \(11 \Gamma\) varcincs chat spocitically adducss chatacteristics of che virus as čansmission and carly

 'lhis work is cheosceical but maccine desien concepes will be
 and we have access to data peitinent to acurc inteccions. \(A\) strons, backeround in propramming, statiscics, and biology
is highly cesiatile.
 virology and immurolony volvability and robuscmess. population genctics, genomic imp:incines, palcob:ologny,

 ycar cem on a full time basis, with the possibility of a one ycar cemn on a null time bas's, with the poss: blity of a one
ycar catension concingent upon concinuation of funding year catension conemgent upon conc:nuation or rundime
ancl perict:rnathe. ancl prerict:Triantee
 Wonen and mino:itics are especially chcounagod to apply.

 post no lace: than December 2, 2005. Fio: fiuther
 946-274 4.

\section*{T)UTMB \\ The Utriversity of Texas Medical Branch}

\section*{FACULTY POSITION, TENURE TRACK Center for Addiction Research and}

\section*{Department of Pharmacology and Toxicology The University of Texas Medical Branch (UTMB)}

Candidates are sought for a lemure-track position available in the Center for \(A\) ddiction Rescarel and the Deparment of Pharmacology and Toxicology at (ITM[3. The successful candidate will have a strong record of scholarly rescarch, publication and extramural funding in newrophannawelogy, neurotoxicology andior neuroscicnec focusal ondrug abuse, aleoholism andior aldiction. Prefcrence will be given to candidates interested in working in a highly collaborative, interdisciplinary enviroment wih interests complementing those of conter dind deparlmental faculy. The UTMB Center for Aldiclion Rescarch is a mique collaboration of faculty who are employing euning edge tools to identify candidate targets and markers for the etiology and pathophysiology of addiction. The Depariment ol Phannacology and Toxicolvgy is comprised of 16 temure-trawk fiwuly who apply conkenporary mokedar, cellular, chemical, and behaviotal appouaches \(w\) the study of addiction, psychiatric disorders, cancer, cell signaling, gene regulation, drug metalolism, molecular toxicology and the structure and function of biolegically ative molecules. The departhent alse houses the Program in Chemical biology, which employs combinatorial and synthetic organic chemistry in pursuit of novel reagents for biomedical research. Rich oppostunities exist for translational research in the areas of addiction, psychiatric disorders, cancer, and neurodegeneration. The position offers a competitive salary and benefits package.
 research aceomplishments and future plans (kess than 3 pages), and namess and conlact information for three references. Please sulmit to: Dr. Kathryn A. Cunningham, director, Center for Addiction Research, and vice chair, Department of Pharmacology and Toxicology, The Éniversity of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031; or cmail via Ms. T.1.. landry, tlandry(outmb.edu. Web sites: 1.TM13 www.utmb.edu; the Center for Addiction Rescatch www.utmbeedu/addiction; Department of Phannateology and Toxicology www.utmb.edw/ phtow/.

UTMR is an Affirmative Action fnstitution which proudly valutes diversifu.
Comdidates of all backgromads are encouraged to appl?.

\section*{THE UNIVERSTTY OF \\ Arizona.}
tucson Arizona

\section*{Assistant/Associate Professor, Environmental Physics}

The Deprartment of Soil, Water and Environmental Science at The TTniversity of a rizona invites applications for a faculty position in environmental physies. We seek dynamic, creative applicants with an excellent understanding of fundamental physical propertics and processes associated with soils and subsurface terrestrial systems. Txamples of desirable rescarch areas include multi-phase fluid flow, deep vadose-zone systems, pore scale processes, and irrigationtrecharge fundamentals. Candidates with experience in quantitative charaderization of flow and transporl processes. including theorelical analysis, mathematical modeling. and innovalive imaging melhods. are espe:itilly encouraged to apply.
The candidale is expeted to complement existing sirenghs of the deparment in one or more of the following overlapping arexs: contaminina transport and fate. water quality. soilgroundwater remediation. soil-plant-water relationships. and environmentid microbiology. The successful candidale is expected to develop a vigorous extemally funded researelh progatm. to supervise graduale researel. and to leach it the undergraduate and graduale levels (wo courses per year). This will be an academic year lenure-rack appointment, and compensation will be commensurate with experience and training.
It is anticipated that this position will he available August 2006. Applicants are required to have a Ph. D. in hydrology, soil physies, or closely related tield at the time of appointment. Thitial review of applications will begin January 15, 2006, and will continue until the position is filled. Candidates should submit their curriculum vitae, names and addresses of at least three referenees, and a statement of rescarch and teaching interests to: Dr. Mark \(\mathbf{I}\). Brusseau, Search Committee Chair, 429 Shantz Bldg POB 210038,1177 F.. Fourth St.. Tucson, A7. 85721-0038. University of Arizona, Tucson. AZ. 85721. Additional information about the department is available at http: //ag.arizuna.edu/SWES/.

US Environmental Protection Agency (EPA) Office of Research and Development (ORD)

FPA's Oftice of Research and Development (ORD), Office of the Science Advisor (\(O S A\)) is seeking a candidate for a ScientiticiTechnical (ST) Professional position as II uman Subjects Researeh Review Official. IIighly qual ified scientific leaders currently engaged in matters related to human researeh ethies and subject safety are sought to lead this high level position.
This position is responsible for providing high-level seientific leadership and overall coordination relating to human research ethics and subject safety. Other responsibilities include representing ORD on Agency ftuman Subjects Workgroups as well as other Federal Oversight Offices such as the Office of Human Research Protestion. The incumbent will adso provide adviee and reconmendations which may serve as a basis for policy decisions in areas related to human subjects research. The inambent will adso be responsible for the Humbn Subjeels Research Review Protocol, serve as the key liaison for EPA in interations with Inslitutional Review Boards; develop. evaluate and oversee latining and staffeducation related to the ethical and safe conduct of human studies; and provide guidance to human researeh investigators in preparing protucols. consent forms. questionnaires. etc. Appoiniment is subject to the suceessful completion of a background security investigation. This position is subjeet to random drug testing.
The mininum rade of basic: pay fur a scientifict Teelmical(S'1) posilion equals 120 pereent of a GS- 15 step I rate of basic pay (e.g., \(\$ 120,155\) per annum). This position will be based in Washington, D.C.
Applicants should submita CV and a vision statemenal wa Jayne Ramsey at US EPA/ORD (8101R), 1200 I'ennsylvania Avenuc, N.W., Washington, D.C. 20460. For more information, please go to http://www.epa.gov/ORT/ htm/jobs_ord.htm, or you may contact. Jayne Ramsey at (202) 564-6736 or ramsey jayne(fiel ena.gov. Applications must be postmarked hy December 23. 2005
U.S. Cilizenship Required

FP. 4 is an Equal Oppormaidy Tmolower

\section*{FACULLY POSILION}

\section*{Department of Biological Sciences} Purdue University
The Department of Roological Sciences invites applications for a tenure-track faculty position in Fertebrate devolopmental bicilegy. Primary consider ation will be griven to candidates who use rebrafish cır mice as genctic animal motels to ask fundamental gucstions in developmental biolege. 'lechnical ex pertise in hish-throughtrot appoaches for soreening cir gene knockdowns, microldNAs, or transgenic lencekouts is desirable. Whe expect to fill an academic year apprimtment at the ASSISTANT PROFESS SOR lowl; homever, appointment at a higher rank will be comsidered for qualifial appelicants.
The Theparment has over 50 faculty members directing rescarch in a wide range of fields from bici infomatics, through molecular and systems levels to cualutionary biology and coology. Onci the next soweral wars mo anticipate additional faculty posi fons: in developmental brology, integratove disease biology, and molecular cyolntion. 'lhe Department direats a transigenic monse eose facility in comburc tion with the Purdue Camer Center and maintains an animal facility. liurther information about the Department is avalable at website: hatp://wws bio.purdue.edu/. 'He University is cxpanding the life sciences onn campus and as part of this initiative several new buildings are nearing exomplefion. These include a now Biounctical Einginecring Buidding, a Structural Hiology Buidding, and the Hindlly Bio science Center, which houses shared facilities for image analysis, gonomics, quantitative and fimetion al protenmics, and other biologian instranentation.
'the sucecssfinl rertebrate developmental biolo ge applicant must hawe a Ph.1). or courualent in an appopriate discipline and at least two yeass of poistdectoral cxpericnce. We seck applicants with a strong potential for excellence in research, the promise of extamural fundiner, and a comminiment tol cxecllence in taxching. Applications must be sub mittal electronically as a PIJF file that inc-lordes a detailed curniculum vitae, the mames and addresses of there references, a summary of rescarch interests, and a (mer-paragrath teaching statement to e-mail chair_devotsbio.purdue.edu. Inguirics should bo dircetcd to: Professor Donna M. Fekete, Chair of Developmental Scarch Committec, Department of Biological Sciences, lurdue University, 915 W. State Strect, West Lafayctte, IN 47907-2054 Review of applications has bespun and will contimue until the position is filled.

The Theparmont also plans to fill, in a collegemide offort called COALESCE, a number of cuther biology faculty positions in multidisciplinary arcas ineluding membrane science, bieninformatics, and nancoscience. Applicants in these ticlds may apply di roctlv to website: hutp://www.science.purdue.edu/ COALESCE/. Applicants to one search may be in cluded in other elclevant searches when apprepriate.

BENTIIIC FCOLOGIST: Caren-track \(p\) ossition GS-[2 entry level, is available at the [T.S. Cendergical Survey iUSGSi, lilorida Lntegrated Scienec Conter to conduct tarseted field and laboratory marime and cstuatinc commmenty rescarch. Applicants must hatr a strong backgromnd in ficld oriented guantitative naline benthic invertebrate ecology. Applicants must have a strong record of independent rescarch, cxter nal fundinge, and publication. Previous postdoctoral experience is essential. The suceessful candidate will assume a lead rale in angoing multi disciplinary derp-water research, and develof a high-caliber rescarch progriam, sustained largely onn cxternal find ing. Dircet inguirics to: Dr. Kenneth Sulak ie mail ken sulak@usgs.gov). Applicants will find details, and must apply conlinc at: website: http:// www. usge.gov/oht/orats/. Vacancy number PR-S-200. 0070 . Opens 70 Novermber 2005 , closses 9 Decerim-
 Action Fmploper:

\section*{EACULLY POSITION} MEDICAL MICROBIOLOGIST
The Bicelegical Sciences D)epartment at Califormia State Polytechnic [Cal Poly) Tinversity, Pomoma, invites applications for a tentre-track Assistant Professour position, beginming September 2006. Candidates must have a stomer coimbitment to excellence it teaching and rescarch. L'he candidate should be ablo to toach both traditional and molectuar diagnostio techmiques to microbjencery, medical terhmology and biotchnology majors. 'I caching responsibilitios will include lowar division and upper dirision/graduate micobtiongyy eosurses, such as mealical bacteriondogy and micdical parasitcilogy, and cother specialty courses, as well as participation in introductory biolegy courses. The successfirl candidate is expected to develop an extramurally fouded rescarch program involviner undergraduate and Mater's level students. 13h.D) is required; teaching and poistdentoral cxperi ence is prefererd. Cad l'oly Pomona is a comprehon ave master s ievel momersity with a diverse student bodx:. The sucecssind candidate will have demonstrated ability to be responsive to the edareational equity scoals of the university and its increasing ethonic diFersity and international character. Applicants should cond: it eurriculum vitae, (2) statement of teaching philoscophy, i3) proposed plan of ecscarch, (4) 1ep csentative publication reprints, and iaj the mames and contact intommation of five refmences to: Dr. Jill Adler Moore, Chair, Medical Microbiologist Search Commuittee, Biological Sciences Department, California State Polytuchnic University, 380] West Lemple Avenue, Pomona, CA 917684132 e mail padler@csupomonacedu). Review of applications will bogin Docomber 18, 2005, and mill continto mntil position is filled. Official transcripts and threo etters of reference will be requiral of all finalists. For further information, wisit the Department website http://www.csupomona.edu/~biology.

 beteran status.

\section*{FACULTY POSITION \\ Department of Chemistry and Biochemistry \\ Center for Protein Structure and Function \\ University of Arkansas}

L'he Department of Chemistry and ficichemistry at the EThiversity of Arkansas is serking an outstanding scientist for a tenure track faculty pasition associated with the NITT National Center for Research Rewith the Nores Center for Trotein Stratere and Function website: http://Fww.uark.edu/chemistry). Re sarch areas appopriate for the position include nuclaar magnetic resonance (NMR) determination of protcin structure and dynamics, drug dosign, biosorsanic chemistry, and spertroscopic stadies of proteins. 'He Conter has fire new NMR spectrom ctors, including a 700 MHz N AR and a 500 MHz NMR, beoth with cryoprobses. State-of-the-art prostcin \(X\) ray crystallography and mass spectrometry core facilities are also associated with the Center Collaborative, multidisijplimary resarah projects are concomraged. Successitul candidates must have a Ph.D. and postdectoral experience and will be expocted to cstablish a mationally funded rescarch program, and teach cffectivoly at the graduate and undergraduate levels. Review of completed applications will begin on December 15, 2005, and continure until the position is filled. Cumsiculum vitae, description of research interests, and thee letters of recommendation should be sent to: letters af recommendation should be sent to:
Professor Frank Millett, Chair, Faculty Scarch Committex, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville,

 тин

 withosit regat to dee, wie, obr, sex, wational ombia
 S.fiived Siaies.

\section*{FACULIY POSLHION}

\section*{Department of Biological Sciences}

\section*{lıurdue University}

The Department of Tiological Sciences invites Peplications for a tenure-track faculty possition in microbial pathogenesis. Wie wish to identify candi dates who focis (an host-pathergen interactions usimer an animad model of infections discasc. Primary con sideration will be given to candidates when use mice as an amimal model tor study furndamental questions in bacterial or wiral pathogenesis. Whe cxpect to fill an acadomic wear appointment at the ASSISLAN' PROFESSOR level; however, apprintment at a higher rank will be considered for qualificd applicants.
The Department has over 50 faculty members directing research in a wide rangre of fields form bioinformatics, through molecuar and systems lcy els, to evolutiomary biolescy and eacology. Over the next soweral years we anticipatc additional faculty positions in derelopmental biologe, integratime divalse buc)(ery, and molecthar evolution. The Department directs a transgenic mounse couc facility in eombunction with the Purdue Cancer Center and maintains an animal facility. Further informaticon about the Department is arailable at website: http://www.bio.purduecdu/. The TYiversity is expanding the lite scienecs on campus and as part of this initiative several new buildings are neating completion. These inclade a new Tionodical Fongincering Building, a Structural Biology Building, and the Binder bioscienec Conter, which houses shared facilities for image analysis, genomics, quanitative and finctional proticomics, and other bio ogreal instrumentation,
the succossfit microbial pathengenesis appli cant must have an A.D., P'h.D., ous cquivalent in an ppropriate discipline and at least two years of postdoctoral experience. Wic scek applicants with a stroner potential for excellence in restarch, the promise of extramural firnding, and a coumbinoment to cxecllence in tcaching. Applications must be sub mitted electronically as a PJJF file that includes a detaled eurriculum vitae, the manes and addresses of thece refirences, a summary of rescarch interests, and a (me-wagaraph teaching statement to e-mail: chair_microoblo.purdue.edu. Incuricics should be dirceted to: Professor Allan E. Konopka, Chair of Microbial Pathogetnesis Search Committes, Department of Biological Sciences, Purdue Univer xity, 915 W. State Strect, West I afayette, IN 47907-2054. Review of aptrications will besrin No) venbor 30,2005 , and continut until the position is filled.

The Department alse plans to fill, in a college wide ctifort callad COALESCE, a number of cother fiology faculty positions in multidiscipsinany areas midnding membrathe science, bicinformatics, and nanoscionce. Applicants in these ficlds mav apply di reatly to website: http://www.science.purduc.odu/ COALESCE/. Applicants to one scarch mave be in claded in other selevant satrethes when app repriate.

 diverse fraitty of exademar.

\section*{POSTDOCLORAL POSIAION}

A postdoctoral porsition is awaidable in protionics at Texas Tech Thiversity, Tabberk, Texas. This position invalues stadies an devolopment off meth odologies for quantitative amalyses of proteins in protecmics research. The applicant must be familiar with protcomics and must have strong cexportise in protein saparation by]-D and 2-D electrophoresis as well as in handling \(M A L D 1\) mass spoctromitur and peptide mass fingorprinting. L'he applicant thould also have excellent communication and writing skills, and must be able to conduct rescarch independently. Applicants should send curriculan vitae ineludiner the names and eomtact addresses of at least three references to: Dr. Satomi Niwayama, e-mail: satomi.niwayamametu.cdu.

\section*{Science Careers Forum}

ScienceCareers.org has partnered with moderator Dave Jensen and three well-respected advisers who, along with your peers, will field career related questions.

\section*{Visit \\ ScienceCareers.org and start an online dialogue.}

ScienceCareers.org We know science

\section*{University of California Riverside}

TITLE/RANK: Professor, Associate Professor, or Assistant Professor. Appointment rank and salary commensurate with experienee.
LOCAIION: University of Califomia, Riverside, Califormia.
P'OSITION: The College of Natural and Agicultural bciences inviles applications for two faculy positions in stem cell biology beginning on or afler July 1, 2006. We are partienlarly interesled in individuals studying the differentiation of human embryonic stem eells and their potential application to human therapy, although all areas of mammalian embryonie stem cell research will be eonsidered. The suceessful eandidates will inleracl wilh our inlerdisciplinary stem cell focus group consisting of faculy from the life scientes, engineting, and biomedical seiences. The stem cell faculty will also be part of our developing Healih buiences Research [nstitute. Highly compentive start-up packages and state-of-the-art facilities are available. IUC' Riverside is a rapidly growing campus with eentral proximity to the major biomedical researeh areas in Southern California.
QLALIFICATIONS: Applicants must hold at Ph.D. M.D. or equivalent and have postdoctoral experience. Candidates must have demonstrated expertise in stem eell biology.
RESP'ONSIBILITIES: The suceessful candidates will establish and minian vigorous. innovitive research progams in stem cell biology taking advantage of new state funding opportunities. as well as federal and private sourees. Opportunities for eraduate student training are available through interdepartmental graduate programs in Neuroscicnce: Cell Molecular and Developmental Biology: Biomedical Scienees; Biochemistry and Molecular Biology; Genctics, Genomies and Bioinformaties. and a developing program in Biocnginecring. Teaching responsibilities would be at the graduate and undergraduate levels.
TO APPIVY: Applications should contain a eurrieulum vitac, brief statement of researeh intereste, relevant reprints, and the names, addresses, phone and fax numbers, and email addresses of three references. Applications can be submitted electronically to stemeells(aser.edu. Alternatively, hardeopy applications can be submitted to Chair, Stem Cell Search Committee, 1208 Spieth IIall, Iniversity of California, Riverside, CA, 92521.
DEADLDEE: Review of applications will begin December 11, 2005 and will contime until the positions are tilled.

\section*{Department of Chemistry}

\section*{Inorganic Chemistry Laboratory Postdoctoral Research Assistant}

Grade RS1A for University Research staff; salary £22,289-£24:352 p.a. There is a vacancy for a Postdoctoral Research Assistant to work with Dr Jason Davis. This PDRA position, renewable for three years, concerns the construction of novel, anion-selective luminescent rotaxanes and catenanes; including surface-assembled systems. The post requires experience of fluorescence/luminescence and surface assembly. The successful applicant will already have a PhD or have submitted a thesis prior to taking up the appointment. The post is for one year in the first instance.
Further particulars are available from the Administrator, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (quoting reference DH05020/JJD), or by e-mail (rita.higgs@chem.ox.ac.uk) and these must be obtained before application is made.
Informal enquiries may be made to Dr Jason Davis (e-mail: jason.davis@chem.ox.ac.uk).
Four copies of applications in the form of a letter, curriculum vitae and the names and addresses of two academic referees, at least one of whom should be your current 'line manager' or supervisor, who may be contacted prior to interview, showing how you fulfil the selection criteria, should be sent \{hard copy only\}, quoting the reference number to: The Administrator, (reference DH05020/JJD) Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, by the closing date is 1st December 2005.

The University is an Equal Opportunities Employer.

\section*{Yale University School of Medicine Interdepartmental Program Cellular Neuroscience, Neurodegeneration, and Repair 333 Cedar Street New Haven, CT 06510 \\ Faculty Positions}

Yale [Iniversity is establishing a Program for Cellular . Ceuroscience, Neurodegeneration, and Repair to bring together scientists involved in basic and translational newrescione research. Aims of the Progran are to: (a) understand neuron-specific aspects of cell function,
(b) elucidate the cellular pathoplysiology of neurodegeneration and (c) tanslate this knouk lelge into therapies capable ofrepaining the nervous system and improving neuronal function in disease.
The Program will mophasize biophysical, molecular and genetic approwehes and fuster interactions across disciplinary boundarics. Faculy, who will be appointed to existing academic deparments, will be housed in common rescarch space at the Seluol of Melicine.
Seven new faculty members will be appointed over the next several years. (andidates must hold an M.D. andior a Ph.J). degree, or equivaIont degrees. We invite applications at the rank of assistant professur, but appointments at the rank of associate and full \(\mathrm{p}^{\text {rofessor }}\) will be considered. The first round of applications is due by December 31, 2065. Please send at cover letics, cumiculum vilac, up to 3 represcnative publications, a researoh plan (strictly limited to 2 pages), and arrange for submission of 3 keters of recommendentionn.
Application materials should be sent electronically to Pictro De Camilli and Stephen M. Strittmatter, co-directors of the Program, exclusively at the following c-mid address: cunrsearchayale.edu. Recommondation letters can be forwarded by mail.
Applications from, or nominations of. women and minority scientisfs are encouraged Yale is an Affrmative Action/Equal Opportunity Emphoyer.

The Tepartinent of Biology at the ITniversity of South lolorida (CSi) announces a tonute track position at the ASSISTANT PROFESSOR level begiming Ausgust 2006. Research interests should be in the general area of genomics. Candidates that can interact with our dynanoic group of faculty with strengths in cell and molecular biolegy, conserya tion bicology and marine biology are encenraged to apply. Candidates must have a Ph.T). in one of the biolegical sciences, postdactoral expericnec and ollevant publications. 'Hhe successfinl candidate will be expectal to developr an active, externally funded rescarch program, and teach an undergraduate course in genetics and graduate conurses in their area of speciolization. Send curriculum witac, repuints of threce published papers, statements of rescarch and teaching interests, and three letters of reference to The Genomics Search Committee, Department of Biology, University of South Florida, 4202 E . Fowler Avenue, SCA 110, Tampa, Florida 336205200 . Completc applications, including letters, must be receival by December T .52005 Accordinge to Flerida Taw, applications and meetings regarding them are epen to the public. 16o . 4D>. 4 frommodations, please inntat Dawn McFownan at telephonc: 813-974-3250 ai lewi inve aypring duls priwr
 Oyportuaity inatitutiona.

\section*{POSTDOCTORAL FELLOWS \\ University of Cincinnati Department of Molecular Genetics, Biochemistry and Microbiology}

Postdoctoral pesitions are ayailable in the area of
 targetings, we have developed models to investigate the individual roles for cach of the alpha iscoterms of this enowne. Tooth standard and conditional krowe outs and gene replacements have been produced. 'I his represcnts a great copportunity for individuals seeking exprerience relatal to physic, dogy of ion transport regulation or training in organ systems such as heart, muscle, vascular system, kidney, (wary, et cetera. The studies involve a multidisciph inary approach including but not limitad to physicilogy and biochemistry. The trajuing enviromuent within the deparnment is outstanding with 27 faculty, 45 grad tate students, and approximately cqual number of postdoctoral fellows. Interestal candidates shourld send their resumes to: Jerry B. Lingrel, Ph.D., Professor and Chair, Department of Molecular Genctics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0524 or e-mail: Jerry. iingrel@uc.edu.

\section*{POSTDOCTORAL POSITIONS \\ Hormone Receptor Signaling/Breast Cancer Northwestern University}

Pexsitions are available in a monecular endecrinology laboratory focused on the fiuction of the prolactin receptor complex during the pathescenesis of breast cancer. Rescarch arcas include the action of the Nek3/Vav2 complex in proximal receptor sigraling, the pathophysiolegic. function of the six recosmizal numan prolactin receptor isciforms, contribution of prolation receptor phosphoryhation to receptor finction, and the regulation of Stat signaling by co regulators and eyclophilin B. Molecular bicileny, cell culture, and/or rodent hushandry experience reguired. Cutting edge methadalogics employed by the laboratory include, but are not limited to, anal ysis using yeast two-hybrid and transcriptional array amalysis; protecmins/mass spectroscopy: and xemograft and knockenout models of breast cancer. Re cent graduates with UT.S. citizenshif or permanent residence are concouraged to apply. Ploase send curric iflum vitae, a statement of research interests, and three roftroncos wia c mail to: Dr. Charles Clevenger, Department of Pathology and Breast Cancer Reseatch Program, Northwestern University at e mail: clevengeremorthwestern.edu. Ligsail Copur-

\title{
POSTDOCTORAL, RESEARCII, AND
} CLINICAL FELLOWSHIPS at the
National Institutes of Health U.S. Department of Health and ITuman Scrvices
Website: http:// www training.nil.gov NHH is dedicuted to vailding a diverow
 progrärs.

\section*{POSIDOCTORAL RESEARCH POSITION}

The Biology Department at Anherst College seek
 rescarch and teaching within the college environ ment. Researeh may be conducted withirn the laborat tory of any momber of the Departmont (website: http://www amherst.edu/~ biology/faculty. homly but must address some aspect of gemomic biology. Participation in the teaching of under graduates will involve the co-teaching of a course,
 or a specific module within a course, with faculty in
the Department. 'Ihe two yoar position is fiunded by a grant from the ITeward Itughes Medical Institute to Amberst College to support teaching and research in the area of genomic biology. Ruvicw of applica tions will begin after January 1, 2006, and eontinut until the pesition is filled. More details of the position and the application process are awailable at website: http://www.amherst.edu/-biology/ menu.htul.

Amherst College is a private undergraduate liberal arts college for men and women, with 1,600 stadents and 190 faculte members. Located in the Conmecticut River Valley of western Massachur sctts, Amherst participates with Hampshire, Mount Helyoke, and Smith Colleges and the University of Massachusetts in the Five-College Consortium

 wirderepresented on sur cimpue.

POSTDOCTORAL POSITION: Calcinm Sig naling in Smooth Muscle. Poistioctoral rosition inmediately available to study calciumi sparks, calcium waves, and potassium channcls in artcrial sinexth muside cells. Experience with cardiovascular physiology, Fatch-claunp electrophysiodegy, wonfocal microscopy and/or calcium imaging proforred Requrived gualifications include a Ph.D. or M.D. in physiolggy or a related ficld. Send curriculum vitac and names and addresses of theec references tol:

Jonathan II. Jaygar, Ph.D.
Department of Physiology
University of Tentessee ITealth Science Center 894 Union Avenue
Memphis, TN 38163 U.S.A.
E-mail: jazagaremphysiol.utmem.codu.

L'he Center for Acpuatic Eicolegy and Conscrua tion at the Tllincois Natural Tistary Survey seeks a POSLDOCTORAL ASSOCLATE' to participate in rescarch on the potential impact of invasive filter feeding Asian cart in the Great Takes. Ph.J. in aguatic coology/limnology requirct: rescarch expe rience in plankton or fisheries biollegy preferted. For the fill position amonomement and application instructions sce website: http://www.inhs.uinc. cdu/opportunitics/index.html. Apply by January 6,2006, for fill considcration. lior technical gucs tions, contact: Dr. Walter Hill (e mail: wrhille uiuc.edu, telephone: 217-244-2103) or Dr. Robert Herendeen ie mail: herendeechinc.edu, telephone: 217-244-2137).
'He Virginia Maryland Regional College of Vtt erinary Madicine has an inmediate opening for a POSTDOCTORAL ASSOCLATE to perform mc lectular and microbiological investigations on speci mens obtained from wild chimpanges. Varion moleculat and microbiological technicgucs will be appliced to study wild chimpanzee poptlations as it relates to their health, well-being and conservation. Emphasis will be onn microsatellite analysis. 1'he incmubent will assist with the training of graduate students on their laboratory stadics involving mol lecular and microbiological techniques, and assist with the prepraration of grant propewals. Candidates must have a Ph.D. with demonstrated ceporience with both microbiokespical and molecular techmigutes, including, mictosatellite analysis, DNA isolation PCR, cloning, and culturing and isolating microbes Candidates with a Ph.J., that also have a IV VM V. M. T. or M. T. are prefersed. Evidence of appropriate rescarch training with a record of putb joations in per-reviewed journals is required Demonstrated skill in scientific writing for poer revicrod journal publications and/or grant prot prowls is required. Candidates must be able to desigr and crocute laboratory experiments. analyze data and prepare manuscripts for \(\rho\) publication. Cand didate. must he self-motivated, capable of working independently, and able to disecrn when it is important to confer with the primeipal investigator. A willingness to work with graduate students is required.
Submit application conline at website: https:// jobs.vt.odu and upload supporting dociments, inchuding: cowr letter, curriculum witac, academic background, research experience and purblications, and three letters of recommendation by Nowenber 06, 2005.
Funding is guaranteal for three years.
Additional information may to obtrained form: Dr. Taranjit Kaur
Virginia Tech CRC XV (0493) Blacksburg, VA 24061
Telephonc: 540-231-6522. Fax: 540-231-7735 E-mail: taranjitevt.cdu

POSTDOCTORAL POSICION immediately availatbe to develop nowel therapeutic modelalities for the treatment of graft wirsus host discasc (GVHD) in the context of allogeneic hematoperistic stem arel transplantation by targeting inflamonatony signaling pathways. Roquirements: M.D. or Ph.D. degree in inmurnolery, cell bioledy, or molectlar biolesy Strong background in murine modds, molecular bio loupe methodologics and flow cytometry, is highly desirable. cutriculum vitae with names, telephone numbors, and 0 mail addresses of three referenecs she culd be sent to: Markus Y. Mapara, M.D., Ph.D., hende toe sent to: Markus Y. Mapara, M.D., , hit of
Division of Iematology-Oncology University of Pittsburgh Cancer Institute, e mail: maparamy upme.colu. Telephote: 412-623-1112.

NTIT-fimded POSTDOCTORAL POSITION to cxplore cnzyme catalytic mechanisms using newly Aovoleped transient state leinetic approaehes (Accounts of Chemical Revearchs \(38: 557,2005\)). Experience ir protcin structure fiunction relaticuships, Finetic iso tope effects, physical-omganic cheminitry, or some elated area is desirable. Contact: I Farvey F. Fisher, Professor of Biochemistry, University of Kamsas School of Medicine at: VA Medical Center, 4801 E. Linwood Bonlevard, Kansas City, MO 64128 or telephone: 8168614700 extension 57156 ; fax: 816-861-1110; or e-mail: hfisheremkutnc.edu.

ASSISTANT CURATOR of Birds and Mammals and POSTDOCTORAL RESEARCH AS SOCIATE. WFe seek an Assistant Curater for the [Tniversity of Missomri's Museurn of 7 ioxolegy. Primary responsibilities are collection curation, taach ing one course per year, and research. For details scc: website: http://www.snr.missouri.edu/fw/. Submit application matcrials to: M.E. Gompper, Department of Fishories and Wildlife Sciences, University of Missouri, Columbia, MO 65211. Review of applications bespins December \(15,2005\).

\title{
Research Grants Inflammatory Bowel Diseases
}
- Seeking exploratory proposals for innovative research in IBD (Crohn's disease and ulcerative colitis).
- Preference for proposals with clinical applicability that will improve the life of IBD patients.
■ Grant applications are invited based on review of brief Letters of Interest.
\(\square\) No submission deadlines. Rapid funding. Worldwide eligibility.
See Website: www.broadmedical.org E-mail: info@broadmedical.org Telephone: 1-310-954-5091

\section*{POSITIONS OPEN}

\section*{Carnegie Mellon. QATAR CAMPUS}

\section*{Human-Computer Interaction Visiting} Faculty Position in the School of Computer Science

Carnegic Mellon TUniversity established a branch campus in Qatar in the fall of 2004. We are offering a \(B S\) dearec in Computer Science to an international student body. The university invites applications for a visiting faculty position to begin as carly as Tamary 2006
We are seeking a faculty member in the area of Tearning Science and Technology with research experienec ideally in designing, implementing, deploying. and evaluating ducational technology in school or college settings. An ability to teach courses in human-computer interation. artificitd intelligence, cognitive psychology, or related areas is also desired. 'lhe position will involve research in collaboration with the Pitisburgh Science of Leaming Center and faculty at the Human-Computer Inleraction Inslitute al Cannegie Mellon in P'ilsburgh. The posilion offers compelitive salaries, overseas assigments, iravel and housing allowances and other benefils packages. as well as alliactive research support.
lnteresied candidates should send their resume, statement of teaching interest and research, and names of diree references to: Faculty Hiring Committec, c/o Ruth Gaus, Qatir Office SMC 1070, 5032 Forbes Avenuc, Pittsburgh, PA 15289; Ruth.Gausajes.emu.edu; Fax 412-253-01924.
- For more infomination on the Piltsburgh science of Leaming Cenar. see http://earnlab.org.
- For more information on the IJuman-Computer Interaction Institute, see http://www.hcii.es.cmu.edu.
- For more information on the BS in CS program, see http:/" www.css.cs.cmu.edu/education/hses/index.html.
- For more information on the Carnegie Mellon Qatar C'ampus, see http: //www.fatar.cmu.edlu'.
- Information on Qatar is available at: http://www.experienceqatar.com/

Assistant or Associate Professor BIOMEDICAL ENGINEERING

The department or Biological Enginecring and the Dalwn Cardiovascular Research Center at the IIniversity of Missouri - Columbia invite applications for a tenure-rack or kenured faculty position. Candidates with rescarch strengehs reked to cell membrame physiology andior bioMEMS are preferred. The successtul candidate will also teach at the undergraduate and graduate levels. Cumpetitive salayy, slat-up packige and laboratory facilities will he provided.
ML offers a fich environment for collaboration and Columbia is consisacnly ranked as one of the wp 20 plates to live in the U.S. The Biolegical lingineering department is rapidly expanding with faculty expertise in biosensurs, bioMEMS, biomatcrials, clectrophysiology, biomechanics, and biophownics. The Mcmbrame Physiology Group at the Didon Center consists of 9 faculty from 4 colleges who study membrane-associated transport processes such as ion chamel gating, transporter function, and exucywsis of neurulransmiles.
Applicants should have an earned doctoral degree in biomedical engineering or a related fiek and a strong bakkgound in bouh engeinecring and life sciences. Senior-level candidates are expected to have a vigorous, extramurally funded researeh program whereas candidates applying at the Assistant Prolessor Ievel must have a high polconlial for cestiblishing an extemally furded researh program. Postdoctoral training is preferred. Revicw of applications will begin on Decenber 1,2005 and will continuc unil the position is filkel.
Applicants should submit a Curiculum Vitae, a summary of past rescarch and future rescarch plans, a brie \(\Gamma\) statement of tewchines plants, and a list of three to five professional references to: Scarch Comimittec Chair, Dept. of Biological Engincering, 215 Ag Eng. Bldg., University of Missouri, Columbia, MO 65211. Ph: (573) 882-2369, Enail: Ratliftle danissouriedu.

MU is an Eqtal Opportunit-A/firmative Action Employer:

What can Science SAGE KE give me?

\section*{Essential online} resources for the study of aging

SAGE KE -Science of Aging Knowledge Environment offers:
- Perspectives and Reviews on hot topics
- Breaking news stories
- A database of genes and intervention 5
- PDF5 of classic papers

SAGE KE brings the latest information on aging related research direct to your desktop. It is also a vibrant virtual community, where researchers from around the world come together to exchange information and ideas. For more information go to www. 5ageke.org

To sign up today, visit ptomo.alaas.otg/ sageas

Sitewide access is available for institutions. To find out mote e-mail sagelicense@aads.org

- How can I organize
and protect my back issues of Science?
A:
custom-made library file cases!

Send order to:
TNC Enterprises Dept.SC
P.O. Box 2475

Warminster, PA 18974
Specify number of slipcases and enclose name, address and payment with your order (no P.O. boxes please). Add \(\$ 3.50\) per slipcase for shipping and handing. PA residents add 6\% sales tax. Cannot ship outside U.S.
Credit Card Orders: Am Ex, VISA, MC accepted. Send name, number, exp. date and signature.
Order online:
www.tncenterprises.net/sc
Unconditionally Guaranteed

\section*{MARKETPLACE}

\section*{Diverse Small Molecules} Ready for screening
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Upwards of 200,000 \\
Compounds
\end{tabular} & \begin{tabular}{c}
ChemBridge \\
Corporation
\end{tabular} \\
\begin{tabular}{c}
Pre-Plated in DM50 \\
Very Competitively \\
Priced
\end{tabular} & Comefngerse \\
Next Day Delivery
\end{tabular}

TransIT"-Reagents and Kits for all your delivery needs: plasmid, siRNA, mRNA, viral RNA and oligos.

Minus.
tit \(\cap\) Began at tbe Bench
wruru.mirusbio.com

Molecular Cloning Laboratories
High throughput DNA sequencing Gene synthesis \(\$ 2 / \mathrm{bp}\) any size
Protein expression \& purification Yeast 2 hybrid/phage displaying
wwwimelab.com, 888 625 1298

\section*{GEE RESULTS FAST..}

PEPscreen \({ }^{\circ}\) Custom Peptide Libraries

DELIVERY IN 7 BUSINESS DAYS!
- QC: MS supplied for all peptides
- Amount: \(0.5-2 \mathrm{mg}\)
- Length: 6-20 amino acids
- Modifications: Variety available
- Format: Lyophilized in 96 -tube rack
- Minimum order size: 48 peptides
- Price: \(\$ 50.00\) per peptide (unmodified)

SIGMA
GENOgYS
www.sigma-genosys.com/MP
North America and Canada - 1-800-234-5362
Email: peptidesesial.com

\section*{Looking for a job?}
- Job Postings
- Job Alerts
- Resume/CV Database
- Career Advice
- Career Forum

Science Carcersorg
We knows sikntion D/AMAS

\section*{Believe it!}

\section*{DNA Sequencing for \(\$ 2.50\) per reaction.}
- Read length up to 900 bases.
- High quality electropherograms.
- Fast turnaround.
- Plasmid and PCR purification available.

\section*{\(\$ 2.50\)} per reaction!

\section*{POLYMORPHIC \\ Polymorphic DNA Technologies, Inc.s"}

\section*{www.polymorphicdna.com info@polymorphicdna.com \\ 1125 Atlantic Ave., Ste. 102 \\ Alameda, CA 94501}

For research use only. Polymorphic DNA Technologles, 2005

Polymorphic exclusively uses ABI 3730XL sequencers.
Data delivered via secure FTP, email or CD.
No charge for standard sequencing primers.
96 sample minimum order.
96 well plates only- no tubes.

\subsection*{888.362.0888}

For more information please visit www.polymorphicdna.com

\section*{Stem Cell \& Lineage Marker Antibodies \(\left.\right|_{\text {from R\&D Systems }}\)}

Quality | Selection | Performance | Results

FIGURE 1. Detection of Nestin in mouse fetal brain tissues using R\&D Systems' goat anti-rat Nestin polyclonal antibody (Catalog \# AF2736). Sections were stained using Rhodamine Red-conjugated anti-goat secondary antibody and counterstained using Fluoro Nissl Green.

FIGURE 2. Detection of Musashi-1 in paraffinembedded human intestine tissue sections using \(10 \mathrm{mg} / \mathrm{mL}\) of R\&D Systems' goat antihuman affinity-purified antibody (Cat. \# AF2628). Tissues were stained using R\&D Systems' anti-goat HRP-DAB Cell and Tissue Staining Kit (brown) (Cat. \# CTSOO8) and counterstained with hematoxylin (blue). Tissue antigen retrieval was done using R\&D Systems' antigen retrieval reagent (basic pH, Cat. \# CTSO13)

FJGUPEE 3. Intracellular staining of mouse embryonic stem cells differentiated by \(5 \mathrm{\mu} \mathrm{M}\) retinoic acid for 3 days with anti-Oct3/4-PE (Catalog \# \(\mathrm{KC1759P}\)) (filled histogram) or with isotype control (Catalog " IC013P, open histogram).

\section*{R\&D Systems cell marker}
antibodies facilitate stem cell
characterization and
assessment of differentiation.

New Antibodies:
\begin{tabular}{|c|c|}
\hline Cripto-1 & Nurr-1 \\
\hline FOXD3 & Pax4 \\
\hline GFAP & Prominin-2 \\
\hline Mash-1 & ROBO4 \\
\hline Musashi-1 & SDNSF \\
\hline NeuroD1 & SOX3 \\
\hline Nestin & SOX7 \\
\hline
\end{tabular}

New fluorochrome-labeled antibodies:
\begin{tabular}{|c|c|}
\hline ABCG2 & PODXL \\
\hline Alkaline Phosphatase & SCF R/c-kit \\
\hline E-Cadherin & SLAM family \\
\hline GATA-1 & SOX-2 \\
\hline Nestin & SSEA-1 \\
\hline Oct-3/4 & SSEA-4 \\
\hline Olig-1,2,3 & Tie-2 \\
\hline Pax3 & VEGFR2/FIk-1 \\
\hline PDX-1 & \\
\hline
\end{tabular}

\section*{Advantages:}
- Highly specific, stable and versatile
- Unparalleled selection:
monoclonal, polyclonal and labeled
www.RnDSystems.com | (800) 343-7475
\begin{tabular}{|c|c|c|c|}
\hline U.S. 8 Canada & Europe & Germany & France \\
\hline RED Systems, Inc. & R\&D Systems Europe Ltd. & R\&D Systerns GmbH & R\&D Systerns Europe \\
\hline |ell:(800il 343-7475 & |el: +44 (0)12355 529449 & lel: 080090084.55 & |e1:0800 907248 \\
\hline inforaknosystems.ciom & inforskrolSystems.cos.uk & infogmbhiskRnl|Systems.cor.uk & infunsknlosysterns.couk \\
\hline
\end{tabular}

R\&D Systems GmbH
|et: 0 RCO 90844.55

R\&D 5ystems is a trademark of TECHNE Corporation.
For research use only. Not for use in humans.```

[^0]: Cambrex, the source for Clonetics" and Poietics" Cell Systems, Biowhitaker ${ }^{* *}$ Ctassical Media, SeaPlaque and NuSieve" Agarose, and PAGEr ${ }^{*}$ Precast Gels.

[^1]:

 - UK TLI. !0800 318,

[^2]: The author is a physicist at Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. E-mail: dp@llnl.gov

[^3]: The authors are in the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. E-mail: zuber@mit.edu; iang@mit.edu

[^4]: ${ }^{1}$ UFZ Umweltforschungszentrum Leipzig-Hatle, Department Ökologische Systemanalyse, PF 500 136, 04301 Leipzig, Germany. ${ }^{2}$ Department of Applied Biology. Estación Biológica de Don̄ana, Spanish Council for Scientific Research CSIC, Ave. Maria Luisa s/n, E-41013 Seville, Spain. "Zentrum für Marine Tropenökologie, Fahrenheitstrasse 6, 28359 Bremen, Germany. ${ }^{4}$ Institut für Biochemie und Biologie, Universität Potsdam, Maulbeerallee 2, 14469 Potsdam, Germany. ${ }^{5}$ Netherlands Institute of Ecology, Centre for Limnology, Rijkstratweg 6,3631 AC Nieuwersluis, Netherlands. ${ }^{6}$ Lang, Railsback and Associates and Department of Mathematics, Humboldt State University, 250 California Avenue, Arcata, CA 95521, USA. 'Botany Section, Department of Ecology, Royal Veterinary and Agricultural University Rolighedsvej 21, DK-1958 Frederiksberg, Denmark. ${ }^{8}$ U.S. Geological Survey/Florida Integrated Science Centers and Department of Biology, University of Miami, Post Office Box 249118, Coral Gables, FL 33124, USA.
 *To whom correspondence should be addressed. E-mail: volker.grimm@ufz.de

[^5]: ${ }^{1}$ Department of Paleobiology, Smithsonian Museum of Natural History, 10th Street and Constitution Avenue, NW, Washington, DC 20560. USA. ${ }^{2}$ Department of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2T, UK. 'Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA. ${ }^{4}$ Division of Vertebrate Paleontology, Florida Museum of Natural History, 222 Dickinson Hall, Museum Road and Newell Drive, Cainesville, FL 32611, USA. 'Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081, USA
 *To whom correspondence should be addressed. E-mail: wings@si.edu

[^6]: ${ }^{1}$ Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8011, Japan. ${ }^{2}$ Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan.
 ${ }^{\text {FT}}$ To whom correspondence should be addressed. E-mail: sakaguchi@rie.shizuoka.ac.jp

[^7]: Department of Chemistry, University of Galifornia, Berkeley, CA 94720, USA.
 *Present address: Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
 \dagger To whom correspondence should be addressed. E-mail: rich@zinc.cchem.berkeley.edu

[^8]: ${ }^{1}$ Department of Earth Science, ${ }^{2}$ Interdepartmental Program in Marine Science, ${ }^{3}$ Marine Science Institute, University of Califomia Santa Barbara, Santa Barbara, CA 93106-9630, USA.
 *To whom correspondence should be addressed: E-mail: lea@geol.ucsb.edu

[^9]: ${ }^{1}$ Mohn-Sverdrup Center for Global Ocean Studies and Operational Oceanography, Nansen Environmental and Remote Sensing Center, Bergen, 5006, Norway. ${ }^{2}$ Geophysical Institute, University of Bergen, 5007, Nonway. ${ }^{3}$ Nansen International Environmental and Remote Sensing Center, St. Petersburg, 197101. Russia. ${ }^{4}$ Bjerknes Centre for Climate Research, Bergen, 5007, Norway. ${ }^{5}$ Environmental Systems Analysis Research Center, Boulder, CO 80303 USA.
 :To whom correspondence should be addressed. E-mail: ola.johannessen@nersc.no

[^10]: Freie Universitãt Berlin, FB Physik, Arnimallee 14, D14195 Berlin, Germany
 *To whom correspondence should be addressed. E-mail: haumann@physik.fu-berlin.de (M.H.); holger. dau@physik.fu-berlin.de (H.D.)

[^11]: ${ }^{1}$ Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080, U5A. ${ }^{2}$ Kravis Children's Hospital, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA. ${ }^{3}$ Department of Drug Discovery, Biogenldec, 14 Cambridge Center, Cambridge, MA 02142, USA. ${ }^{4}$ Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.
 ${ }^{5}$ Chemistry and Chemical Biology Program, University of California, San Francisco, 600 16th Street, Box 2280 , San Francisco, CA 94143, USA.
 : F To whom correspondence should be addressed. E-mail: bcc@sunesis.com

[^12]: ${ }^{1}$ Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892 USA. ${ }^{2}$ Basic Research Program, SAIC-Frederick, ${ }^{3}$ Protein Interaction Group, Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA. ${ }^{4}$ Department of Molecular Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA. ${ }^{5}$ Theoretical Biology ($\mathbf{T} 10$), Los Alamos National Laboratory, Los Alamos, NM 87545, USA. ${ }^{5}$ Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
 *To whom correspondence should be addressed. E-mail: richw@mail.nih.gov: pdkwong@nih.gov

[^13]: ${ }^{1}$ Department of Ecology, Evolution, and Environmental Biology. ${ }^{2}$ Earth Institute, Columbia University, New York, NY 10027. USA. ${ }^{3}$ Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO 63166, USA. ${ }^{4}$ Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA. School of Natural Resources and Environment, University of Michigan, Ann Arbor, M1 48109, USA. ${ }^{6}$ Earth and Biosphere Institute, School of Geography, University of Leeds, Leeds LS 9JT. UK. ${ }^{7}$ Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
 *To whom correspondence should be addressed. E-mail: deb37@columbia.edu

[^14]: Crop Genetics Department, Johm Innes Centre, Norwich Research Park, Colney, Nowich NR4 7UH, UK.
 *These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: david. laurie@bbsrc.ac.uk

[^15]: Newly offered instrumentation, apparatus, and laboratory materials of interest to researchers in all disciplines in academic, industrial, and government organizations are featured in this space. Emphasis is given to purpose, chief characteristics, and availability of products and materials. Endorsement by ScienceorAAAS of any products or materials mentioned is not implied. Additional information may be obtained from the manufacturer or supplier by visiting www.science.labvelocity.com on the Web, where you can request that the information be sent to you by e-mail, fax, mail, or telephone.

[^16]: The Brighom and Wonens Hocpital, an Affirmative Action, Equat Opportunity Employer: is a Harvord Medical School affiliate. Applications from women and minoritie's are highl encouraged and desired. Applicants must he dS oiftzens or permonent residents.

